...
首页> 外文期刊>Journal of Neurophysiology >Role of synaptic dynamics and heterogeneity in neuronal learning of temporal code
【24h】

Role of synaptic dynamics and heterogeneity in neuronal learning of temporal code

机译:突触动力学和异质性在时态神经元学习中的作用

获取原文
获取原文并翻译 | 示例

摘要

Temporal codes are believed to play important roles in neuronal representation of information. Neuronal ability to classify and learn temporal spiking patterns is thus essential for successful extraction and processing of information. Understanding neuronal learning of temporal code has been complicated, however, by the intrinsic stochasticity of synaptic transmission. Using a computational model of a learning neuron, the tempotron, we studied the effects of synaptic unreliability and short-term dynamics on the neuron's ability to learn spike timing rules. Our results suggest that such a model neuron can learn to classify spike timing patterns even with unreliable synapses, albeit with a significantly reduced success rate. We explored strategies to improve correct spike timing classification and found that firing clustered spike bursts significantly improves learning performance. Furthermore, rapid activity-dependent modulation of synaptic unreliability, implemented with realistic models of dynamic synapses, further improved classification of different burst properties and spike timing modalities. Neuronal models with only facilitating or only depressing inputs exhibited preference for specific types of spike timing rules, but a mixture of facilitating and depressing synapses permitted much improved learning of multiple rules. We tested applicability of these findings to real neurons by considering neuronal learning models with the naturally distributed input release probabilities found in excitatory hippocampal synapses. Our results suggest that spike bursts comprise several encoding modalities that can be learned effectively with stochastic dynamic synapses, and that distributed release probabilities significantly improve learning performance. Synaptic unreliability and dynamics may thus play important roles in the neuron's ability to learn spike timing rules during decoding.
机译:时间码被认为在信息的神经元表示中起重要作用。因此,神经元分类和学习时间突增模式的能力对于成功提取和处理信息至关重要。然而,由于突触传递的内在随机性,理解时间代码的神经元学习变得复杂。使用学习神经元,即节拍器的计算模型,我们研究了突触不可靠性和短期动力学对神经元学习尖峰时序规则的能力的影响。我们的结果表明,即使神经突触不可靠,这种模型神经元也可以学习对尖峰时序模式进行分类,尽管成功率显着降低。我们探索了改善正确的尖峰定时分类的策略,并发现激发群集的尖峰脉冲可以显着提高学习性能。此外,通过动态突触的现实模型实现了突触不可靠性的快速依赖于活动的调制,进一步改善了不同猝发特性和尖峰定时方式的分类。仅具有促进作用或仅具有抑制作用的输入的神经元模型表现出对特定类型的尖峰时序规则的偏爱,但是促进和抑制突触的混合可以大大改善对多个规则的学习。我们通过考虑具有兴奋性海马突触中自然分布的输入释放概率的神经元学习模型,测试了这些发现对真实神经元的适用性。我们的结果表明,尖峰脉冲包含几种可以通过随机动态突触有效学习的编码方式,而分布式释放概率则可以显着提高学习性能。因此,突触的不可靠性和动态性可能在神经元在解码过程中学习尖峰时序规则的能力中发挥重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号