...
首页> 外文期刊>Journal of Neurochemistry: Offical Journal of the International Society for Neurochemistry >How does adenosine control neuronal dysfunction and neurodegeneration?
【24h】

How does adenosine control neuronal dysfunction and neurodegeneration?

机译:腺苷如何控制神经元功能障碍和神经变性?

获取原文
获取原文并翻译 | 示例

摘要

The adenosine modulation system mostly operates through inhibitory A(1) (A(1)R) and facilitatory A(2A) receptors (A(2A)R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A(2A)R; A(2A)R switch off A(1)R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A(1)R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A(1)R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A(2A)R, probably to bolster adaptive changes, but this heightens brain damage since A(2A)R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A(2A)R, whereas astrocytic and microglia A(2A)R might control the spread of damage. The A(2A)R signaling mechanisms are largely unknown since A(2A)R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A(1)R preconditioning and preventing excessive A(2A)R function might afford maximal neuroprotection.
机译:腺苷调节系统主要通过大脑中的抑制性A(1)(A(1)R)和促进性A(2A)受体(A(2A)R)起作用。腺苷的活性依赖性释放起通过A1R的兴奋性传递的制动作用,而A1R富含谷氨酸能末端。腺苷增强了神经元回路中信息编码的显着性:高频刺激触发“活化”突触中的ATP释放,该突触被胞外核苷酸酶局部转化为腺苷以选择性激活A(2A)R; A(2A)R切断A(1)R和CB1受体,支持谷氨酸释放和NMDA受体,以帮助增加“活化”突触中的突触可塑性。星形胶质合胞体的平行接合释放出腺苷,进一步抑制邻近突触,从而使编码的塑料变化更加尖锐。脑部损伤会触发大量腺苷和ATP流出,这是一种危险信号。 A(1)R是引发伤害的障碍,但长时间激活后它们会脱敏。但是,如果侮辱程度接近阈值和/或持续时间短,则A(1)R会触发预处理,这可能会限制损害的扩散。脑损伤还会上调A(2A)R,可能是为了增强适应性变化,但是由于A(2A)R阻滞在癫痫,抑郁,阿尔茨海默氏病或​​帕金森氏病模型中具有神经保护作用,因此会加剧脑损伤。最初,这涉及通过神经元A(2A)R控制突触毒性,而星形胶质细胞和小胶质细胞A(2A)R可能控制损伤的扩散。由于A(2A)R是多效性的,与不同的G蛋白和非典型途径偶联以控制谷氨酸能突触的活力,神经炎症,线粒体功能和细胞骨架动力学,因此A(2A)R信号传导机制在很大程度上是未知的。因此,同时支持A(1)R预处理和防止过度的A(2A)R功能可能会提供最大的神经保护。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号