...
首页> 外文期刊>Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites >Characterization of a {(Fe60Co40)(75)B20Si5}(96)Nb-4 impulse atomized glassy powder by Neutron Diffraction and Differential Scanning Calorimetry
【24h】

Characterization of a {(Fe60Co40)(75)B20Si5}(96)Nb-4 impulse atomized glassy powder by Neutron Diffraction and Differential Scanning Calorimetry

机译:{(Fe60Co40)(75)B20Si5}(96)Nb-4脉冲雾化玻璃状粉末的中子衍射和差示扫描量热法表征

获取原文
获取原文并翻译 | 示例
           

摘要

This paper investigates FeCo-based alloy glass formability by high undercooling and high cooling rate solidification technique and the hardness evaluation of the generated samples. For this investigation, Impulse Atomization was used to generate {(Fe60Co40)(75)B20Si5}(96)Nb-4 powders of different sizes that correspond to different cooling rates and undercoolings. The amorphous fraction and kinetic crystallization properties of the investigated powders were determined by means of Differential Scanning Calorimetry and Neutron Diffraction. The enthalpy of crystallization of a close to amorphous powder produced by gas atomization was used as a reference for the calculation of amorphous fraction by calorimetry in atomized powders. Thus, a quantitative estimation of cooling rate corresponding to each powder size and the variation of amorphous fraction with cooling rate are presented. Higher cooling rate promoted by smaller powder size and helium atomization atmosphere is found to yield higher amorphous fraction. At relatively high cooling rates Neutron Diffraction technique yields higher amorphous fractions than the Differential Scanning Calorimetry technique. The critical cooling rate for amorphous phase formation under unconstrained solidification conditions using Impulse Atomization is found to be similar to 15,000 Ks(-1) which corresponds to a powder size of about 100 mu m atomized in nitrogen or about 200 mu m atomized in helium. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文通过高过冷度和高冷却速率凝固技术研究了FeCo基合金玻璃的可成形性,并对生成的样品进行了硬度评估。对于此研究,使用脉冲雾化生成不同尺寸的{(Fe60Co40)(75)B20Si5}(96)Nb-4粉末,这些粉末对应于不同的冷却速率和过冷度。通过差示扫描量热法和中子衍射法测定所研究粉末的无定形部分和动力学结晶性能。将通过气体雾化产生的接近无定形粉末的结晶焓用作通过量热法计算雾化粉末中的非晶分数的参考。因此,提出了与每种粉末尺寸相对应的冷却速率的定量估计以及非晶态组分随冷却速率的变化。发现由较小的粉末尺寸和氦气雾化气氛促进的较高的冷却速率产生较高的无定形部分。在相对较高的冷却速率下,中子衍射技术比差示扫描量热技术可产生更高的非晶分数。发现在无约束凝固条件下使用脉冲原子化形成非晶相的临界冷却速率类似于15,000 Ks(-1),这对应于在氮气中雾化约100μm或在氦气中雾化约200μm的粉末尺寸。 (C)2015 Elsevier B.V.保留所有权利。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号