首页> 外文期刊>Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology >A proton conductive silicate-nanoencapsulated polyimide nonwoven as a novel porous substrate for a reinforced sulfonated poly(arylene ether sulfone) composite membrane
【24h】

A proton conductive silicate-nanoencapsulated polyimide nonwoven as a novel porous substrate for a reinforced sulfonated poly(arylene ether sulfone) composite membrane

机译:质子传导性硅酸盐纳米封装的聚酰亚胺非织造布,用作增强型磺化聚(亚芳基醚砜)复合膜的新型多孔基材

获取原文
获取原文并翻译 | 示例
           

摘要

A novel reinforcing porous substrate that features unprecedented capability of offering proton conductivity is demonstrated for potential use in a reinforced composite proton exchange membrane. The unusual porous substrate (hereinafter, referred to as "sPI substrate") is composed of 3-trihydroxysilyl propane-1-sulfonic acid (THSPSA)-based silicate coating layers and electrospun polyimide (PI) nonwoven fibers. The THSPSA coating layers bearing sulfonic acid groups endow the sPI substrate with strong affinity for water molecules and also afford appreciable proton conductivity. Another distinctive characteristic of the sPI substrate is the nanoarchitectured structure of the THSPSA coating layers (shell) that encapsulate the PI nonwoven fibers (core). As a result, the core-shell structured sPI substrate maintains a highly porous structure, which plays a crucial role in providing effective proton-conducting channels after the impregnation of a polymer electrolyte (herein, sulfonated poly(arylene ether sulfone) (SPAES)). Notably, owing to the assistance of the proton-conductive sPI substrate, the sPI substrate-reinforced SPAES composite membrane presents higher proton conductivity than a PI nonwoven-reinforced SPAES composite membrane under various relative humidity (RH) conditions. This intriguing proton conductivity behavior is discussed based on an in-depth understanding of the unique core-shell structure and functionality of the sPI substrate and, moreover, is quantitatively interpreted by estimating theoretical proton conductivities predicted from series and parallel two-layer models.
机译:具有增强的质子传导性的空前能力的新型增强多孔基材被证明可用于增强复合质子交换膜。不寻常的多孔基材(以下称为“ sPI基材”)由基于3-三羟基甲硅烷基丙烷-1-磺酸(THSPSA)的硅酸盐涂层和电纺聚酰亚胺(PI)非织造纤维组成。带有磺酸基团的THSPSA涂层使sPI基材对水分子具有很强的亲和力,并且还提供了可观的质子传导性。 sPI基材的另一个显着特征是THSPSA涂层(壳)的纳米结构,该结构封装了PI非织造纤维(芯)。结果,核-壳结构的sPI基质保持了高度多孔的结构,在聚合物电解质(本文中为磺化聚亚芳基醚砜(SPAES))浸渍后,在提供有效的质子传导通道方面起着至关重要的作用。 。值得注意的是,由于质子传导性sPI基底的辅助,在各种相对湿度(RH)条件下,sPI基底增强的SPAES复合膜呈现出比PI非织造增强的SPAES复合膜更高的质子传导性。基于对sPI底物独特的核壳结构和功能的深入了解,讨论了这种有趣的质子电导率行为,此外,还通过估算从串联和平行两层模型预测的理论质子电导率来定量解释质子电导率行为。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号