...
首页> 外文期刊>Journal of Molecular Biology >Evolutionary trace annotation of protein function in the structural proteome.
【24h】

Evolutionary trace annotation of protein function in the structural proteome.

机译:结构蛋白质组中蛋白质功能的进化痕迹注释。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

By design, structural genomics (SG) solves many structures that cannot be assigned function based on homology to known proteins. Alternative function annotation methods are therefore needed and this study focuses on function prediction with three-dimensional (3D) templates: small structural motifs built of just a few functionally critical residues. Although experimentally proven functional residues are scarce, we show here that Evolutionary Trace (ET) rankings of residue importance are sufficient to build 3D templates, match them, and then assign Gene Ontology (GO) functions in enzymes and non-enzymes alike. In a high-specificity mode, this Evolutionary Trace Annotation (ETA) method covered half (53%) of the 2384 annotated SG protein controls. Three-quarters (76%) of predictions were both correct and complete. The positive predictive value for all GO depths (all-depth PPV) was 84%, and it rose to 94% over GO depths 1-3 (depth 3 PPV). In a high-sensitivity mode, coverage rose significantly (84%), while accuracy fell moderately: 68% of predictions were both correct and complete, all-depth PPV was 75%, and depth 3 PPV was 86%. These data concur with prior mutational experiments showing that ET rank information identifies key functional determinants in proteins. In practice, ETA predicted functions in 42% of 3461 unannotated SG proteins. In 529 cases--including 280 non-enzymes and 21 for metal ion ligands--the expected accuracy is 84% at any GO depth and 94% down to GO depth 3, while for the remaining 931 the expected accuracies are 60% and 71%, respectively. Thus, local structural comparisons of evolutionarily important residues can help decipher protein functions to known reliability levels and without prior assumption on functional mechanisms. ETA is available at http://mammoth.bcm.tmc.edu/eta.
机译:通过设计,结构基因组学(SG)解决了许多结构,这些结构无法基于与已知蛋白质的同源性分配功能。因此,需要替代的功能注释方法,并且本研究着重于使用三维(3D)模板进行功能预测:仅由几个功能关键残基构成的小型结构基序。尽管缺乏经过实验验证的功能残基,但我们在这里显示出残基重要性的进化轨迹(ET)等级足以构建3D模板,进行匹配,然后在酶和非酶类中分配基因本体(GO)功能。在高特异性模式下,这种进化示踪注释(ETA)方法覆盖了2384个带注释的SG蛋白对照的一半(53%)。四分之三(76%)的预测既正确又完整。所有GO深度(全深度PPV)的阳性预测值为84%,并且在GO深度1-3(深度3 PPV)​​中上升到94%。在高灵敏度模式下,覆盖率显着提高(84%),而准确性则适度下降:68%的预测都是正确且完整的,全深度PPV为75%,深度3 PPV为86%。这些数据与先前的突变实验一致,后者表明ET等级信息可识别蛋白质中的关键功能决定簇。实际上,ETA预测了3461个未注释的SG蛋白中有42%的功能。在529种情况下-包括280种非酶和21种金属离子配体-在任何GO深度处的预期准确度为84%,在GO深度3处的预期准确度为94%,而对于其余931种,预期的准确度为60%和71 %, 分别。因此,在进化上重要的残基的局部结构比较可以帮助将蛋白质功能解读为已知的可靠性水平,而无需事先假设功能机制。有关ETA的信息,请访问http://mammoth.bcm.tmc.edu/eta。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号