首页> 外文期刊>Journal of Molecular Biology >Structure and reactivity of Bacillus subtilis MenD catalyzing the first committed step in menaquinone biosynthesis.
【24h】

Structure and reactivity of Bacillus subtilis MenD catalyzing the first committed step in menaquinone biosynthesis.

机译:枯草芽孢杆菌MenD的结构和反应性催化甲基萘醌生物合成的第一步。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The first committed step in the classical biosynthetic route to menaquinone (vitamin K(2)) is a Stetter-like conjugate addition of alpha-ketoglutarate with isochorismate. This reaction is catalyzed by the thiamine diphosphate and metal-ion-dependent 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase (MenD). The medium-resolution (2.35 A) crystal structure of Bacillus subtilis MenD with cofactor and Mn(2+) has been determined. Based on structure-sequence comparisons and modeling, a two-stage mechanism that is primarily driven by the chemical properties of the cofactor is proposed. Hypotheses for the molecular determinants of substrate recognition were formulated. Five basic residues (Arg32, Arg106, Arg409, Arg428, and Lys299) are postulated to interact with carboxylate and hydroxyl groups to align substrates for catalysis in combination with a cluster of non-polar residues (Ile489, Phe490, and Leu493) on one side of the active site. The powerful combination of site-directed mutagenesis, where each of the eight residues is replaced by alanine, and steady-state kinetic measurements has been exploited to address these hypotheses. Arg409 plays a significant role in binding both substrates while Arg428 contributes mainly to binding of alpha-ketoglutarate. Arg32 and in particular Arg106 are critical for recognition of isochorismate. Mutagenesis of Phe490 and Ile489 has the most profound influence on catalytic efficiency, indicating that these two residues are important for binding of isochorismate and for stabilizing the cofactor position. These data allow for a detailed description of the structure-reactivity relationship that governs MenD function and refinement of the model for the catalytic intermediate that supports the Stetter-like conjugate addition.
机译:迈纳醌(维生素K(2))的经典生物合成路线中的第一个重要步骤是将α-酮戊二酸酯与异邻苯二甲酸酯类的Stetter状共轭加成。硫胺二磷酸和依赖金属离子的2-琥珀酰基-5-烯醇丙酮基6--6-羟基-3-环己二烯-1-羧酸合酶(MenD)催化该反应。枯草芽孢杆菌MenD与辅因子和Mn(2+)的中等分辨率(2.35 A)晶体结构已确定。基于结构序列的比较和建模,提出了一种主要由辅因子的化学性质驱动的两阶段机理。制定了底物识别分子决定因素的假设。假定五个碱性残基(Arg32,Arg106,Arg409,Arg428和Lys299)与羧酸盐和羟基相互作用,以对齐底物以进行催化,并与一组非极性残基(Ile489,Phe490和Leu493)结合活动站点。定点诱变的强大组合,其中八个残基中的每个残基都被丙氨酸取代,并且已经利用稳态动力学测量来解决这些假设。 Arg409在结合两种底物方面起着重要作用,而Arg428主要促进α-酮戊二酸的结合。 Arg32,尤其是Arg106对于识别等渗橡胶至关重要。 Phe490和Ile489的诱变对催化效率具有最深远的影响,表明这两个残基对于等渗酸的结合和稳定辅因子位置很重要。这些数据允许详细描述控制MenD功能的结构-反应性关系,并完善支持Stetter样共轭物的催化中间体的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号