...
首页> 外文期刊>Journal of Molecular Biology >Exit strategies for charged tRNA from GluRS.
【24h】

Exit strategies for charged tRNA from GluRS.

机译:从GluRS退出带电tRNA的退出策略。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

For several class I aminoacyl-tRNA synthetases (aaRSs), the rate-determining step in aminoacylation is the dissociation of charged tRNA from the enzyme. In this study, the following factors affecting the release of the charged tRNA from aaRSs are computationally explored: the protonation states of amino acids and substrates present in the active site, and the presence and the absence of AMP and elongation factor Tu. Through molecular modeling, internal pK(a) calculations, and molecular dynamics simulations, distinct, mechanistically relevant post-transfer states with charged tRNA bound to glutamyl-tRNA synthetase from Thermus thermophilus (Glu-tRNA(Glu)) are considered. The behavior of these nonequilibrium states is characterized as a function of time using dynamical network analysis, local energetics, and changes in free energies to estimate transitions that occur during the release of the tRNA. The hundreds of nanoseconds of simulation time reveal system characteristics that are consistent with recent experimental studies. Energetic and network results support the previously proposed mechanism in which the transfer of amino acid to tRNA is accompanied by the protonation of AMP to H-AMP. Subsequent migration of proton to water reduces the stability of the complex and loosens the interface both in the presence and in the absence of AMP. The subsequent undocking of AMP or tRNA then proceeds along thermodynamically competitive pathways. Release of the tRNA acceptor stem is further accelerated by the deprotonation of the alpha-ammonium group on the charging amino acid. The proposed general base is Glu41, a residue binding the alpha-ammonium group that is conserved in both structure and sequence across nearly all class I aaRSs. This universal handle is predicted through pK(a) calculations to be part of a proton relay system for destabilizing the bound charging amino acid following aminoacylation. Addition of elongation factor Tu to the aaRS.tRNA complex stimulates the dissociation of the tRNA core and the tRNA acceptor stem.
机译:对于几种I类氨基酰基-tRNA合成酶(aaRSs),氨基酰化反应中决定速率的步骤是将带电荷的tRNA与酶解离。在这项研究中,以下因素影响了从aaRS释放带电tRNA的释放:在活性位点存在的氨基酸和底物的质子化状态,以及AMP和延伸因子Tu的存在与否。通过分子建模,内部pK(a)计算和分子动力学模拟,考虑了带电荷的tRNA与嗜热栖热菌的谷氨酰tRNA合成酶(Glu-tRNA(Glu))结合的独特的,机械相关的转移后状态。这些不平衡状态的行为使用动态网络分析,局部能量学和自由能的变化来表征时间,以估计在tRNA释放过程中发生的跃迁。数百纳秒的仿真时间揭示了与最近的实验研究一致的系统特性。能量和网络结果支持先前提出的机制,其中氨基酸向tRNA的转移伴随着AMP质子化为H-AMP。质子随后迁移到水中会降低复合物的稳定性,并在存在和不存在AMP的情况下使界面松弛。随后,AMP或tRNA的后续对接沿着热力学竞争途径进行。荷电氨基酸上的α-铵基团去质子化进一步促进了tRNA受体茎的释放。提议的通用碱基是Glu41,它是结合α-铵基团的残基,该残基在几乎所有I类aaRS的结构和序列上都是保守的。通过pK(a)计算可预测该通用手柄是质子传递系统的一部分,该体系可在氨酰化后使结合的带电氨基酸不稳定。向aaRS.tRNA复合物中添加延伸因子Tu可以刺激tRNA核心和tRNA受体茎的解离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号