...
首页> 外文期刊>Journal of Molecular Biology >Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli.
【24h】

Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli.

机译:Na +驱动的嵌合鞭毛马达在大肠杆菌中的转矩-速度关系。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The bacterial flagellar motor is a rotary motor in the cell envelope of bacteria that couples ion flow across the cytoplasmic membrane to torque generation by independent stators anchored to the cell wall. The recent observation of stepwise rotation of a Na(+)-driven chimeric motor in Escherichia coli promises to reveal the mechanism of the motor in unprecedented detail. We measured torque-speed relationships of this chimeric motor using back focal plane interferometry of polystyrene beads attached to flagellar filaments in the presence of high sodium-motive force (85 mM Na(+)). With full expression of stator proteins the torque-speed curve had the same shape as those of wild-type E. coli and Vibrio alginolyticus motors: the torque is approximately constant (at approximately 2200 pN nm) from stall up to a "knee" speed of approximately 420 Hz, and then falls linearly with speed, extrapolating to zero torque at approximately 910 Hz. Motors containing one to five stators generated approximately 200 pN nm per stator at speeds up to approximately 100 Hz/stator; the knee speed in 4- and 5-stator motors is not significantly slower than in the fully induced motor. This is consistent with the hypothesis that the absolute torque depends on stator number, but the speed dependence does not. In motors with point mutations in either of two critical conserved charged residues in the cytoplasmic domain of PomA, R88A and R232E, the zero-torque speed was reduced to approximately 400 Hz. The torque at low speed was unchanged by mutation R88A but was reduced to approximately 1500 pN nm by R232E. These results, interpreted using a simple kinetic model, indicate that the basic mechanism of torque generation is the same regardless of stator type and coupling ion and that the electrostatic interaction between stator and rotor proteins is related to the torque-speed relationship.
机译:细菌鞭毛马达是细菌细胞外膜中的旋转马达,它将离子流过细胞质膜,并通过锚定在细胞壁上的独立定子产生扭矩。最近观察到在大肠杆菌中由Na(+)驱动的嵌合马达逐步旋转的现象,有望以前所未有的细节揭示出马达的机理。我们在高钠动力(85 mM Na(+))存在的情况下,使用附着在鞭毛丝上的聚苯乙烯珠的后焦平面干涉测量法测量了这种嵌合马达的转矩-速度关系。在定子蛋白完全表达的情况下,转矩-速度曲线具有与野生型大肠杆菌和溶藻弧菌马达相同的形状:从失速到“拐点”速度,转矩近似恒定(约2200 pN nm)。大约420 Hz,然后随速度线性下降,外推到大约910 Hz的零扭矩。包含一到五个定子的电动机,每个定子在高达约100 Hz /定子的速度下产生约200 pN nm; 4定子和5定子电动机的膝部速度不会比完全感应电动机的膝部速度明显慢。这与绝对转矩取决于定子数量而速度依赖性无关的假设是一致的。在PomA,R88A和R232E的胞质结构域的两个关键保守带电残基中的一个具有点突变的电动机中,零转矩速度降低到大约400 Hz。低速转矩通过突变R88A保持不变,但通过R232E降低到大约1500 pN nm。用简单的动力学模型解释的这些结果表明,无论定子类型和耦合离子如何,转矩产生的基本机理都是相同的,并且定子和转子蛋白质之间的静电相互作用与转矩-速度关系有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号