...
首页> 外文期刊>Journal of Molecular Biology >A simple model of backbone flexibility improves modeling of side-chain conformational variability.
【24h】

A simple model of backbone flexibility improves modeling of side-chain conformational variability.

机译:一个简单的骨架柔性模型可以改善侧链构象变异性的建模。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The considerable flexibility of side-chains in folded proteins is important for protein stability and function, and may have a role in mediating allosteric interactions. While sampling side-chain degrees of freedom has been an integral part of several successful computational protein design methods, the predictions of these approaches have not been directly compared to experimental measurements of side-chain motional amplitudes. In addition, protein design methods frequently keep the backbone fixed, an approximation that may substantially limit the ability to accurately model side-chain flexibility. Here, we describe a Monte Carlo approach to modeling side-chain conformational variability and validate our method against a large dataset of methyl relaxation order parameters derived from nuclear magnetic resonance (NMR) experiments (17 proteins and a total of 530 data points). We also evaluate a model of backbone flexibility based on Backrub motions, a type of conformational change frequently observed inultra-high-resolution X-ray structures that accounts for correlated side-chain backbone movements. The fixed-backbone model performs reasonably well with an overall rmsd between computed and predicted side-chain order parameters of 0.26. Notably, including backbone flexibility leads to significant improvements in modeling side-chain order parameters for ten of the 17 proteins in the set. Greater accuracy of the flexible backbone model results from both increases and decreases in side-chain flexibility relative to the fixed-backbone model. This simple flexible-backbone model should be useful for a variety of protein design applications, including improved modeling of protein-protein interactions, design of proteins with desired flexibility or rigidity, and prediction of correlated motions within proteins.
机译:折叠蛋白质中侧链的相当大的柔韧性对于蛋白质的稳定性和功能很重要,并且可能在介导变构相互作用中起作用。尽管采样侧链自由度已成为几种成功的计算蛋白质设计方法不可或缺的一部分,但尚未将这些方法的预测与侧链运动幅度的实验测量结果直接进行比较。另外,蛋白质设计方法经常使骨架保持固定,这可能会严重限制精确建模侧链灵活性的能力。在这里,我们描述了一种模拟侧链构象变异性的蒙特卡洛方法,并针对源自核磁共振(NMR)实验的大量甲基弛豫顺序参数数据集(17个蛋白质和530个数据点)验证了我们的方法。我们还评估了基于Backrub运动的骨架柔性模型,Backrub运动是经常观察到的超高分辨率X射线结构的一种构象变化,说明了相关的侧链骨架运动。固定骨干模型在计算出的和预测的侧链阶数参数之间的均方根均方根(rmsd)为0.26时,表现良好。值得注意的是,包括主链灵活性可大大改善模型中17种蛋白质中10种蛋白质的侧链顺序参数的建模。相对于固定骨干模型,灵活主干模型的更高准确性来自于侧链灵活性的增加和减少。这种简单的柔性骨干模型应适用于各种蛋白质设计应用,包括改进的蛋白质-蛋白质相互作用建模,设计具有所需弹性或刚度的蛋白质以及预测蛋白质内部相关运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号