首页> 美国卫生研究院文献>other >A simple model of backbone flexibility improves modeling of side-chain conformational variability
【2h】

A simple model of backbone flexibility improves modeling of side-chain conformational variability

机译:一个简单的骨架柔性模型可改善侧链构象变异性的建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The considerable flexibility of side-chains in folded proteins is important for protein stability and function, and may play a role in mediating pathways of energetic connectivity between allosteric sites. While sampling side-chain degrees of freedom has been an integral part of several successful computational protein design methods, the predictions of these approaches have not been directly compared to experimental measurements of side-chain motional amplitudes. In addition, protein design methods generally keep the backbone fixed, an approximation that may substantially limit the ability to accurately model side-chain flexibility. Here we describe a Monte Carlo approach to modeling side-chain conformational variability and validate our method against a large dataset of methyl relaxation order parameters derived from Nuclear Magnetic Resonance experiments (17 proteins and a total of 530 data points). We also evaluate a model of backbone flexibility based on Backrub motions, a type of conformational change frequently observed in ultra-high resolution X-ray structures that accounts for correlated side-chain backbone movements. The fixed-backbone model performs reasonably well with an overall rmsd between computed and predicted side-chain order parameters of 0.26. Notably, including backbone flexibility leads to significant improvements in modeling side-chain order parameters for 10 of the 17 proteins in the set. Higher accuracy of the flexible backbone model results from both increases and decreases in side-chain flexibility relative to the fixed-backbone model. This simple flexible-backbone model should be useful for a variety of protein design applications, including improved modeling of protein-protein interactions, design of proteins with desired flexibility or rigidity, and prediction of energetic pathways within proteins.
机译:折叠蛋白质中侧链的相当大的灵活性对于蛋白质的稳定性和功能很重要,并且可能在变构位点之间的能量连接途径的介导中发挥作用。尽管采样侧链自由度已成为几种成功的蛋白质设计计算方法不可或缺的一部分,但尚未将这些方法的预测与侧链运动幅度的实验测量结果直接进行比较。另外,蛋白质设计方法通常使骨架保持固定,这一近似值可能会严重限制精确建模侧链柔性的能力。在这里,我们描述了一种模拟侧链构象变异性的蒙特卡洛方法,并针对来自核磁共振实验的大量甲基弛豫顺序参数数据集(17个蛋白质和总共530个数据点)验证了我们的方法。我们还评估了基于Backrub运动的骨架柔韧性模型,Backrub运动是超高分辨率X射线结构中经常观察到的一种构象变化,说明了相关的侧链骨架运动。固定骨干模型在计算出的和预测的侧链阶数参数之间的均方根均方根(rmsd)为0.26时,表现良好。值得注意的是,包括主链灵活性可显着改善模型中17种蛋白质中10种蛋白质的侧链顺序参数的建模。相对于固定骨干模型,柔性主干模型的更高准确性来自于侧链灵活性的增加和减少。这种简单的柔性骨干模型应适用于各种蛋白质设计应用,包括改进的蛋白质-蛋白质相互作用建模,设计具有所需弹性或刚度的蛋白质以及预测蛋白质内的能量途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号