首页> 外文期刊>Journal of nanoscience and nanotechnology >Electronic and Structural Response of Nanomaterials to Ultrafast and Ultraintense Laser Pulses
【24h】

Electronic and Structural Response of Nanomaterials to Ultrafast and Ultraintense Laser Pulses

机译:纳米材料对超快和超强激光脉冲的电子和结构响应

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The interaction of materials with ultrafast and ultraintense laser pulses is a current frontier of science both experimentally and theoretically. In this review, we briefly discuss some recent theoretical studies by the present authors with our method of semiclassical electron-radiation-ion dynamics (SERID). In particular, Zhou et al. and Jiang et al. respectively, determined the optimal duration and optimal timing for a series of femtosecond scale laser pulses to excite a specific vibrational mode in a general chemical system. A set of such modes can be used as a "fingerprint" for characterizing a particular molecule or a complex in a solid. One can therefore envision many applications, ranging from fundamental studies to detection of chemical or biological agents. Allen et al. proved that dimers are preferentially emitted during photofragmentation of C_(60) under an ultrafast and ultraintense laser pulse. For interactions between laser pulses and semiconductors, e.g., GaAs, Si and InSb, besides experimentally accessible optical properties - ∈(ω) and χ~(2)-Allen et al. offered many other indicators to confirm the nonthermal nature of structural changes driven by electronic excitations and occurring during the first few hundred femtoseconds. Lin et al. found that, after the application of a femtosecond laser pulse, excited electrons in materials automatically equilibrate to a Fermi-Dirac distribution within roughly 100 fs, solely because of their coupling to the nuclear motion, even though the resulting electronic temperature is one to two orders of magnitude higher than the kinetic temperature defined by the nuclear motion.
机译:无论是在实验上还是理论上,材料与超快和超强激光脉冲的相互作用都是当前的科学前沿。在这篇综述中,我们用半经典电子辐射离子动力学(SERID)方法简要讨论了当前作者的一些理论研究。特别是,周等。和江等。分别确定了一系列飞秒级激光脉冲的最佳持续时间和最佳定时,以激发一般化学系统中的特定振动模式。一组此类模式可以用作“指纹”,以表征固体中的特定分子或复合物。因此,可以预见许多应用,从基础研究到化学或生物制剂的检测。艾伦等。证明了在超快和超强激光脉冲作用下C_(60)的光碎裂过程中,优先发出二聚体。对于激光脉冲与半导体(例如GaAs,Si和InSb)之间的相互作用,除了实验上可以达到的光学特性-ε(ω)和χ〜(2)-Allen等。提供了许多其他指标来确认由电子激发驱动并发生在头几百飞秒内的结构变化的非热性质。 Lin等。发现在施加飞秒激光脉冲后,材料中的激发电子会自动在大约100 fs内达到费米-狄拉克分布,这仅仅是因为它们与核运动耦合,即使最终电子温度为一到两个数量级数量级高于核运动定义的动力学温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号