...
首页> 外文期刊>Journal of Materials Science >Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering
【24h】

Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering

机译:结合蛋白的静电纺丝聚氨酯基支架与平滑肌细胞的生物相容性评估,用于血管组织工程

获取原文
获取原文并翻译 | 示例
           

摘要

Nanotechnology has enabled the engineering of a variety of materials to meet the current challenges and needs in vascular tissue regeneration. In this study, four different kinds of native proteins namely collagen, gelatin, fibrinogen, and bovine serum albumin were incorporated with polyurethane (PU) and electropsun to obtain composite PU/protein nanofibers. SEM studies showed that the fiber diameters of PU/protein scaffolds ranged from 245 to 273 nm, mimicking the nanoscale dimensions of native ECM. Human aortic smooth muscle cells (SMCs) were cultured on the electrospun nanofibers, and the ability of the cells to proliferate on different scaffolds was evaluated via a cell proliferation assay. Cell proliferation on PU/Coll nanofibers was found the highest compared to other electrospun scaffolds and it was 42 % higher than the proliferation on PU/Fib nanofibers after 12 days of cell culture. The cell-biomaterial interaction studies by SEM confirmed that SMCs adhered to PU/Coll and PU/Gel nanofibers, with high cell substrate coverage, and both the scaffolds promoted cell alignment. The functionality of the cells was further demonstrated by immunocytochemical analysis, where the SMCs on PU/Coll and PU/Gel nanofibers expressed higher density of SMC proteins such as alpha smooth muscle actin and smooth muscle myosin heavy chain. Cells expressed biological markers of SMCs including aligned spindle-like morphology on both PU/Coll and PU/Gel with actin filament organizations, better than PU/Fib and PU/BSA scaffolds. Our studies demonstrate the potential of randomly oriented elastomeric composite scaffolds for engineering of vascular tissues causing cell alignment.
机译:纳米技术使多种材料的工程设计能够满足当前在血管组织再生中的挑战和需求。在这项研究中,四种不同类型的天然蛋白,即胶原蛋白,明胶,纤维蛋白原和牛血清白蛋白,与聚氨酯(PU)和电刺法结合,获得了复合PU /蛋白纳米纤维。 SEM研究表明,PU /蛋白质支架的纤维直径范围为245至273 nm,与天然ECM的纳米级尺寸相似。在电纺纳米纤维上培养人主动脉平滑肌细胞(SMC),并通过细胞增殖测定法评估细胞在不同支架上的增殖能力。与其他电纺支架相比,PU / Coll纳米纤维上的细胞增殖最高,比培养12天后PU / Fib纳米纤维上的增殖高42%。通过SEM进行的细胞-生物材料相互作用研究证实,SMCs粘附在PU / Coll和PU / Gel纳米纤维上,具有很高的细胞底物覆盖率,并且两种支架都促进了细胞排列。通过免疫细胞化学分析进一步证明了细胞的功能,其中PU / Coll和PU / Gel纳米纤维上的SMC表达更高密度的SMC蛋白,例如α平滑肌肌动蛋白和平滑肌肌球蛋白重链。细胞在具有肌动蛋白丝组织的PU / Coll和PU / Gel上均表达SMC的生物学标志物,包括对齐的纺锤状形态,优于PU / Fib和PU / BSA支架。我们的研究表明,随机定向的弹性复合材料支架在血管组织工程中引起细胞排列的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号