首页> 外文学位 >Vascular smooth muscle cell responses to 3D polyurethane scaffolds for tissue engineering applications.
【24h】

Vascular smooth muscle cell responses to 3D polyurethane scaffolds for tissue engineering applications.

机译:血管平滑肌细胞对3D聚氨酯支架的反应,用于组织工程应用。

获取原文
获取原文并翻译 | 示例

摘要

One promising strategy in vascular tissue engineering is the design of hybrid vascular substitutes where vascular cells infiltrate biostable porous scaffolds, which provide a favourable environment for guided cell repopulation and act as a mechanically supporting layer after the tissue regeneration process. The aim of the present work was to characterize interactions of human coronary artery smooth muscle cells (HCASMC) with 3D porous biostable polyurethane scaffolds. To initially assess the feasibility of polyurethanes as potential materials for vascular tissue engineering applications, HCASMC and human coronary artery endothelial cells were cultured onto films, and results showed that polyurethanes supported the adhesion of vascular cells, the formation of endothelial monolayers and the maintenance of the differentiated smooth muscle cell phenotype. We therefore used a pressure differential/particulate leaching technique to fabricate 3D polyurethane scaffolds with pores generated from either paraffin or NR4Cl porogens. SEM and microCT studies of the fabricated scaffolds showed that the current scaffolds had highly open and interconnected pore structures, with an average porosity of 84%. In comparison to scaffolds fabricated from NR4Cl porogens, the use of paraffin porogens resulted in scaffolds with highly spherical pores, thinner struts, micropores between macropores, and higher surface area to volume ratio. Following uniaxial compression and extension tests, scaffolds fabricated from NR4Cl porogens had superior mechanical properties, which are suitable for vascular tissue engineering. HCASMC interactions on scaffolds revealed that cells adhered to the scaffolds and displayed an elongated morphology with parallel alignment. Surface modification with Matrigel or fibronectin promoted further cellular infiltration and proliferation. Deep in the scaffold, cells were encountered that formed actin-rich lamellipodial extensions spreading along the struts and lacked stress fibers, suggesting active cell migration. HCASMC started producing collagen as judged by histochemical analysis but appeared to lack elastin production. Western blot analyses following successful cell recovery from the scaffolds indicated that HCASMC, after culturing for 4 and 7 days, expressed similar amounts of smalpha-actin and calponin regardless of ECM coating. Taken together, our data showed that biostable polyurethanes can be used to fabricate porous and highly interconnected 3D scaffolds that promote HCASMC attachment, proliferation, migration, differentiation and collagen production.;Keywords: tissue engineering, polyurethane scaffolds, vascular grafts, mechanical properties, vascular smooth muscle cell, cell adhesion, cell proliferation, cell infiltration, marker protein expression, extracellular matrix production
机译:血管组织工程学中一种有希望的策略是设计混合型血管替代物,其中血管细胞渗入生物稳定的多孔支架,这为引导细胞的繁殖提供了有利的环境,并在组织再生过程后充当了机械支撑层。本工作的目的是表征人类冠状动脉平滑肌细胞(HCASMC)与3D多孔生物稳定聚氨酯支架的相互作用。为了初步评估聚氨酯作为血管组织工程应用潜在材料的可行性,将HCASMC和人冠状动脉内皮细胞培养在薄膜上,结果表明聚氨酯支持血管细胞的粘附,内皮单层的形成以及血管内皮的维持。分化的平滑肌细胞表型。因此,我们使用了压差/微粒浸出技术来制造3D聚氨酯支架,该支架具有由石蜡或NR4Cl致孔剂产生的孔。 SEM和microCT对制成的支架的研究表明,目前的支架具有高度开放和相互连接的孔结构,平均孔隙率为84%。与由NR4Cl致孔剂制成的支架相比,使用石蜡致孔剂可产生具有高度球形孔,更薄的支撑杆,大孔之间的微孔以及更高的表面积与体积比的支架。经过单轴压缩和拉伸测试后,由NR4Cl致孔剂制成的支架具有优异的机械性能,适用于血管组织工程。 HCASMC在支架上的相互作用表明细胞粘附在支架上,并呈现平行排列的细长形态。用基质胶或纤连蛋白进行的表面修饰促进了进一步的细胞浸润和增殖。在支架的深处,遇到了形成富含肌动蛋白的lamellipodial延伸的细胞,这些延伸沿支杆扩散并且缺乏应力纤维,表明细胞活跃迁移。根据组织化学分析,HCASMC开始产生胶原蛋白,但似乎缺乏弹性蛋白的产生。从支架成功回收细胞后进行的蛋白质印迹分析表明,培养4天和7天后,HCASMC表达类似量的smalpha-actin和calponin,无论ECM涂层如何。综上所述,我们的数据表明,生物稳定的聚氨酯可用于制造可促进HCASMC附着,增殖,迁移,分化和胶原蛋白生成的多孔且高度互连的3D支架;关键词:组织工程,聚氨酯支架,血管移植物,机械性能,血管平滑肌细胞,细胞粘附,细胞增殖,细胞浸润,标志物蛋白表达,细胞外基质产生

著录项

  • 作者

    Grenier, Stephanie.;

  • 作者单位

    The University of Western Ontario (Canada).;

  • 授予单位 The University of Western Ontario (Canada).;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号