首页> 外文期刊>Journal of Materials Science >Mesoscale analysis of segmental dynamics in microphase-segregated polyurea
【24h】

Mesoscale analysis of segmental dynamics in microphase-segregated polyurea

机译:微相分离聚脲中段动力学的中尺度分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Polyurea is an elastic co-polymer which possesses a very complex nanometer-scale microstructure consisting of (high glass-transition temperature, T _g) hydrogen-bonded discrete hard domains dispersed within a (low T _g) contiguous soft matrix. A number of experimental investigations reported in the open literature clearly established that (a) polyurea has an unusually high capacity for shock mitigation and (b) this ability of polyurea is related to its segmental dynamics (the same process which is responsible for the rubbery-to-glassy transition). Due to the fact that the segmental dynamics in question involves a large number of atoms with coordinated motion and, hence, is associated with nanosecond to microsecond characteristic times, it cannot be generally analyzed using all-atom molecular dynamics techniques. To overcome this problem, mesoscale coarse-grain simulation methods are employed in this study. Within the all-atomic simulation methods, the material is modeled as a collection of constituent atom-size particles. Within the mesoscale methods, on the other hand, this atomistic description of the material is replaced with a collection of coarser particles/beads which account for the collective degrees of freedom of the constituent atoms. Consequently, before the mesoscale methods could be employed to polyurea, all-atom molecular analyses had to be used to determine the basic properties (i.e., mass and radius) of the beads and to parameterize the mesoscale bonding and non-bonding forcefield functions. The mesoscale analyses were then used to (a) obtain critical information regarding the material microstructure and its evolution (from an initially fully blended homogeneous state) and (b) the segmental dynamics in the microsegregated state of the material.
机译:聚脲是一种弹性共聚物,具有非常复杂的纳米级微观结构,该微观结构由分散在(低T_g)连续软基质内的(高玻璃化转变温度T_g)氢键键合的离散硬域组成。开放文献报道的许多实验研究清楚地表明,(a)聚脲具有异常高的减震能力,并且(b)聚脲的这种能力与其分段动力学有关(相同的过程也导致了橡胶状-过渡到玻璃状)。由于所讨论的分段动力学涉及大量具有协调运动的原子,因此与纳秒至微秒的特征时间相关联,因此一般无法使用全原子分子动力学技术对其进行分析。为了克服这个问题,本研究采用中尺度粗粒度模拟方法。在全原子模拟方法中,将材料建模为组成原子大小的粒子的集合。另一方面,在中尺度方法中,这种对材料的原子描述被一组较粗的颗粒/珠子代替,这些颗粒/珠子说明了组成原子的总体自由度。因此,在中尺度方法可用于聚脲之前,必须使用全原子分子分析来确定珠粒的基本性质(即质量和半径),并参数化中尺度键合力和非键合力场函数。然后,中尺度分析用于(a)获得有关材料微观结构及其演变的关键信息(从最初的完全混合均匀状态开始),以及(b)材料的微观偏析状态下的分段动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号