首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech forum >Extended Proper Orthogonal Decomposition (EPOD) and Dynamic Mode Decomposition (DMD) for Analysis of Mesoscale Burner Array Flame Dynamics
【24h】

Extended Proper Orthogonal Decomposition (EPOD) and Dynamic Mode Decomposition (DMD) for Analysis of Mesoscale Burner Array Flame Dynamics

机译:扩展的适当正交分解(EPOD)和动态模式分解(DMD)用于中尺度燃烧器阵列火焰动力学分析

获取原文

摘要

An analysis of mesoscale combustion dynamics based on Extended Proper Orthogonal Decomposition (EPOD) and Dynamic Mode Decomposition (DMD) is presented. These decomposition techniques can fully characterize and quantify dynamically relevant coherent structures in a complex flow field by projecting it onto a simplified dynamical system with significantly fewer degrees of freedom. Coherent structures are extracted from three different data sets (one numerical and two experimental) and appropriately attributed to dominant flame dynamics without a priori knowledge of the reactive flow field. Numerically-constructed images and laminar flame OH-PLIF images served to validate POD and DMD analysis and its application on combustion phenomenon, respectively. The comparison showed that the temporal DMD method could clearly separate each structure in the spatial and spectral senses. However, an examination of the POD modes and the spectrum curves of each POD coefficient convincingly demonstrated that the POD mode corresponding to the desired structure is contaminated by the other uncorrelated structures. Based on these validations, POD and DMD analysis using high-speed OH chemiluminescence images of mesoscale combustor array under two characteristic conditions (Steady and oscillatory flame) was successfully carried out. Dominant spatial structures and their energy contents in the recirculation zone or shear layer were accurately resolved with DMD. In addition to the global frequency response spectrum, DMD can provide detailed descriptions of spectrally pure coherent features that can be systematically correlated to underlying physics that drives combustion instability and provide a consistent interpretation. Although, POD analysis revealed similar results, there were limitations in terms of the information presented (no growth or decay rate) and the obvious existence of the undesirable contamination of the POD modes, as reflected in the interaction between the desired and uncorrelated structures. The findings presented in this study enable a step forward for experimental community in flame oscillation and combustion instability analysis. The key insight regarding complex interactions between acoustics, fluid mechanics and combustion will ultimately serve a critical role in developing detailed combustion instability models.
机译:提出了基于扩展适当正交分解(EPOD)和动态模式分解(DMD)的中尺度燃烧动力学分析。这些分解技术可以通过将复杂的相干结构投影到简化的动态系统中(具有显着较少的自由度)来充分表征和量化复杂流场中的动态相关相干结构。相干结构是从三个不同的数据集(一个数值和两个实验)中提取的,并适当地归因于主要的火焰动力学,而无需先验知识的反应流场。数值构造图像和层流火焰OH-PLIF图像分别用于验证POD和DMD分析及其在燃烧现象上的应用。比较表明,时间DMD方法可以在空间和光谱意义上清楚地分离每个结构。但是,对POD模式和每个POD系数的频谱曲线的检查令人信服地证明,与所需结构相对应的POD模式被其他不相关的结构污染了。基于这些验证,成功地使用中尺度燃烧器阵列的高速OH化学发光图像在两个特征条件(稳定火焰和振荡火焰)下进行了POD和DMD分析。用DMD可以精确解析出再循环区或剪切层中的主要空间结构及其能量含量。除了全局频率响应频谱之外,DMD还可以提供频谱纯相干特征的详细描述,这些特征可以系统地关联到驱动燃烧不稳定性并提供一致解释的基本物理特性。尽管POD分析显示出相似的结果,但是在所提供的信息(无增长或衰减率)和明显存在的POD模式不良污染方面存在局限性,这反映在所需结构与不相关结构之间的相互作用中。这项研究中提出的发现使实验团体在火焰振荡和燃烧不稳定性分析方面向前迈进了一步。有关声学,流体力学和燃烧之间复杂相互作用的关键见解最终将在开发详细的燃烧不稳定性模型中发挥关键作用。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号