...
首页> 外文期刊>Journal of Colloid and Interface Science >Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices
【24h】

Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices

机译:三相玻璃毛细管微流控装置中双重乳剂破碎的动力学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Pinch-off of a compound jet in 3D glass capillary microfluidic device, which combines co-flowing and countercurrent flow focusing geometries, was investigated using an incompressible three-phase axisymmetric Volume of Fluid-Continuum Surface Force (VOF-CSF) numerical model. The model showed good agreement with the experimental drop generation and was capable of predicting formation of core/shell droplets in dripping, narrowing jetting and widening jetting regimes. In dripping and widening jetting regimes, the presence of a vortex flow around the upstream end of the necking thread facilitates the jet break-up. No vortex flow was observed in narrowing jetting regime and pinch-off occurred due to higher velocity at the downstream end of the coaxial thread compared to that at the upstream end. In all regimes, the inner jet ruptured before the outer jet, preventing a leakage of the inner drop into the outer fluid. The necking region moves at the maximum speed in the narrowing jetting regime, due to the highest level of shear at the outer surface of the thread. However, in widening jetting regime, the neck travels the longest distance downstream before it breaks. (C) 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
机译:使用不可压缩的三相流体连续表面力轴对称体积(VOF-CSF)数值模型,研究了结合了并流和逆流聚焦几何结构的3D玻璃毛细管微流体装置中复合喷嘴的收缩。该模型显示出与实验液滴产生的良好一致性,并能够预测滴落,射流变窄和射流变宽的核/壳液滴的形成。在滴注和加宽喷射方式中,在颈缩线上游端附近存在涡流有助于喷射破裂。在狭窄的喷射状态下未观察到涡流,并且由于同轴线下游端的速度高于上游端的速度,因此发生夹断。在所有情况下,内部射流都在外部射流之前破裂,从而防止内部液滴泄漏到外部流体中。颈缩区域在变细的喷射方式下以最大速度运动,这是由于线的外表面处的剪切力最高。但是,在加宽喷射方式下,颈部在断裂之前向下游移动的距离最长。 (C)2015作者。由Elsevier Inc.发行。这是CC BY许可(http://creativecommons.org/licenses/by/4.0/)下的开放访问文章。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号