...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >A comparative study of enhanced electrochemical stability of tin-nickel alloy anode for high-performance lithium ion battery
【24h】

A comparative study of enhanced electrochemical stability of tin-nickel alloy anode for high-performance lithium ion battery

机译:高性能锂离子电池锡镍合金负极增强电化学稳定性的比较研究

获取原文
获取原文并翻译 | 示例
           

摘要

Sn and Sn-Ni alloy nanoparticles are synthesized readily by co-precipitation method for their applications in Li-ion batteries. It is found that nickel not only affects the phase structure and morphology of the alloy, but also impacts Li-Sn alloying and dealloying behaviors. In Li-ion batteries, the alloy electrodes deliver stronger cycling stability than the pure Sn anode. In tests the former exhibits a final capacity of 228.5 mA h g(-1) over 50 cycles, while the latter displays 14.3 mA h g(-1). Smaller current for battery cycles increases capacities of the alloys beyond 408.4 mA h g(-1). The mechanism of enhanced stability of Sn-Ni alloys is examined. Redox reaction characteristics and Li-ion transfer kinetics at these anodes after different cycles are investigated by cyclic voltammetry and electrochemical impedance spectroscopy, which are considered to associate with buffering effects of nickel and structural integrity of electrodes. Li-Sn alloying and dealloying reactions cause volume changes and induce stress that releases in the formation of tiny cracks within the particles. The cracks accelerate side reactions and decelerate charge transport, detrimental to the electrode stability. Nickel cushions the volume variations and reduces the stress and cracks at Sn-Ni alloy anodes to allow them to maintain better electrode integrity and smaller charge resistance, thus yielding their improved Li-ion intercalation stability during long-term cycling. (C) 2014 Elsevier B.V. All rights reserved.
机译:通过共沉淀法可以容易地合成Sn和Sn-Ni合金纳米粒子,并将其应用于锂离子电池。发现镍不仅影响合金的相结构和形态,而且影响锂锡合金化和脱合金行为。在锂离子电池中,合金电极比纯锡阳极具有更强的循环稳定性。在测试中,前者在50个循环中的最终容量为228.5 mA h g(-1),而后者显示14.3 mA h g(-1)。较小的电池循环电流将使合金的容量增加到408.4 mA h g(-1)以上。研究了Sn-Ni合金增强稳定性的机理。通过循环伏安法和电化学阻抗谱研究了这些阳极在不同循环后的氧化还原反应特性和锂离子传递动力学,认为这与镍的缓冲作用和电极的结构完整性有关。 Li-Sn的合金化和脱合金反应引起体积变化,并引起应力,该应力在颗粒内形成微小裂纹时释放。裂纹会加速副反应并减慢电荷传输,从而不利于电极的稳定性。镍可缓冲体积变化并减少Sn-Ni合金阳极处的应力和裂纹,从而使它们能够保持更好的电极完整性和较小的充电电阻,从而在长期循环过程中提高了锂离子嵌入稳定性。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号