...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >The effects of nanometric nickel (n-Ni) catalyst on the dehydrogenation and rehydrogenation behavior of ball milled lithium alanate (LiAlH_4)
【24h】

The effects of nanometric nickel (n-Ni) catalyst on the dehydrogenation and rehydrogenation behavior of ball milled lithium alanate (LiAlH_4)

机译:纳米镍(n-Ni)催化剂对球磨铝酸锂(LiAlH_4)脱氢和再氢化行为的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A comprehensive study of the effects of nanometric Ni (n-Ni) additive having a specific surface area (SSA) of 9.5 and 14.5m~2/g on the dehydrogenation and rehydrogenation behavior of mechanically (ball) milled LiAlH4 has been carried out using Differential Scanning Calorimetry (DSC), X-ray diffraction (XRD) and volumetric hydrogen desorption in a Sieverts-type apparatus under 0.1MPa H_2 pressure. The LiAlH_4 +1, 5 and 10 wt.% n-Ni mixtures were processed by a simple mixing as well as low energy and high energy mechanical (ball) milling in a unique magneto-mill. No decomposition during milling up to 1 h has been observed for LiAlH_4 + 5 and 10 wt.% n-Ni. A mixing of LiAlH_4 + n-Ni still results in the melting of LiAlH_4. In contrast, doping with 5 and 10 wt.% n-Ni combined with high energy ball milling completely eliminates melting of LiAlH_4. Volumetric dehydrogenation studies show that throughout the entire temperature range from 100 ℃ to 250℃ a LiAlH_4 + n-Ni nanocomposite system ball milled under high energy mode always desorbs hydrogen in a solid state without any melting in two stages I and II. Stage I is related to the transformation of LiAlH_4 into (Li_3AlH_6 +Al+H_2) and Stage II is related to the transformation of Li_3AlH_6 into (LiH +Al +H_2). The apparent activation energy of Stage I and II equals ~70 and ~100 kJ/mol, respectively. This can be compared with the apparent activation energy of ball milled undoped LiAlH_4 equal to about 90 kJ/mol for both Stage I and II as reported in Ref. [9]. It is also shown that n-Ni is a very potent catalyst destabilizing a ball milled mixture of LiAlH_4 + 5 wt.% to the extent that it is capable to desorb slowly quite substantial quantities of hydrogen at RT, 40 and 80 ℃. The rate of H_2 release during storage at this temperature range can be easily regulated by increasing or decreasing temperature. These virtues make the LiAlH_4 + 5 wt.% n-Ni mixture a potential hydrogen storage material for applications where a continuous supply of hydrogen is required for a prolonged service time as, for example, in some chemical processes where the presence of a reducing atmosphere is required. Rehydrogenation attempts of ball milled dehydrogenated LiAlH_4 + 5 wt.% n-Ni have been made. The dehydrogenation temperatures were selected in such a manner as to rehydrogenate either starting from the (Li_3AlH-3 + Al) (dehydrogenation at 120 ℃) or from the (LiH + Al) (dehydrogenation at 170 and 250 ℃) phase composition. Rehydrogenation temperatures and pressures of H_2 were in the range of 55–250 ℃ and 0.2–10 MPa, respectively. Unfortunately, no successful rehydrogenation has been observed under these conditions.
机译:进行了对比表面积(SSA)为9.5和14.5m〜2 / g的纳米Ni(n-Ni)添加剂对机械(球)研磨的LiAlH4的脱氢和再氢化行为的影响的综合研究。在0.1MPa H_2压力下,在Sieverts型装置中进行差示扫描量热法(DSC),X射线衍射(XRD)和体积氢脱附。 LiAlH_4 + 1、5%和10 wt%的n-Ni混合物通过简单的混合以及在独特的磁力磨机中进行的低能和高能机械(球)研磨进行处理。对于LiAlH_4 + 5和10 wt。%的n-Ni,在长达1小时的研磨过程中未观察到分解。 LiAlH_4 + n-Ni的混合仍导致LiAlH_4熔化。相比之下,掺入5和10 wt%的n-Ni并结合高能球磨可以完全消除LiAlH_4的熔化。体积脱氢研究表明,在高能模式下研磨的LiAlH_4 + n-Ni纳米复合材料球在100℃至250℃的整个温度范围内,在第一阶段和第二阶段中始终以固态解吸氢而没有任何熔化。阶段I与LiAlH_4向(Li_3AlH_6 + Al + H_2)的转变有关,阶段II与Li_3AlH_6向(LiH + Al + H_2)的转变有关。第一和第二阶段的表观活化能分别等于〜70和〜100 kJ / mol。这可以与参考文献中报道的对于阶段I和阶段II的球磨未掺杂LiAlH_4的表观活化能等于约90kJ / mol进行比较。 [9]。还表明,n-Ni是一种非常有效的催化剂,在一定程度上可以稳定LiAlH_4 + 5 wt。%的球磨混合物的稳定性,从而使其能够在室温,40和80℃下缓慢释放大量氢气。通过升高或降低温度,可以轻松调节在此温度范围内存储期间H_2的释放速率。这些优点使LiAlH_4 + 5 wt。%n-Ni混合物成为潜在的储氢材料,适用于需要长时间连续供应氢气以延长使用寿命的应用,例如,在某些化学工艺中,存在还原气氛是必须的。已经进行了球磨的脱氢的LiAlH_4 + 5重量%的n-Ni的再氢化尝试。选择脱氢温度的方式应使其从(Li_3AlH-3 + Al)(在120℃下脱氢)或从(LiH + Al)(在170和250℃下脱氢)相组成重新进行氢化。 H_2的再氢化温度和压力分别在55–250℃和0.2–10 MPa的范围内。不幸的是,在这些条件下没有观察到成功的再氢化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号