...
首页> 外文期刊>International journal of hydrogen energy >The effects of the micrometric and nanometric iron (Fe) additives on the mechanical and thermal dehydrogenation of lithium alanate (LiAlH_4), its self-discharge at low temperatures and rehydrogenation
【24h】

The effects of the micrometric and nanometric iron (Fe) additives on the mechanical and thermal dehydrogenation of lithium alanate (LiAlH_4), its self-discharge at low temperatures and rehydrogenation

机译:微米级和纳米级铁(Fe)添加剂对铝酸锂(LiAlH_4)的机械和热脱氢,其在低温下的自放电和再氢化的影响

获取原文
获取原文并翻译 | 示例
           

摘要

LiAlH_4 containing 5 wt.% of nanometric Fe (n-Fe) shows a profound mechanical dehydrogenation by continuously desorbing hydrogen (H_2) during high energy ball milling reaching ~3.5 wt.% H_2 after 5 h of milling. In contrast, no H_2 desorption is observed during low energy milling of LiAlH_4 containing n-Fe. Similarly, no H_2 desorption occurs during high energy ball milling for LiAlH_4 containing micrometric Fe (μ-Fe) and, for comparison, both the micrometric and nanometric Ni (μ-Ni and n-Ni) additive. X-ray diffraction studies show that ball milling results in a varying degree of the lattice expansion of LiAlH_4 for both the Fe and Ni additives. A volumetric lattice expansion larger than 1% results in the profound destabilization of LiAlH_4 accompanied by continuous H_2 desorption during milling according to reaction: LiAlH_4 (solid) →V3Li_3AlH_6 + 2/3A1 + H_2. It is hypothesized that the Fe ions are able to dissolve in the lattice of LiAlH_4 by the action of mechanical energy, replacing the Al ions and forming a substitutional solid solution. The quantity of dissolved metal ions depends primarily on the total energy of milling per unit mass of powder generated within a prescribed milling time, the type of additive ion e.g. Fe vs. Ni and on the particle size (micrometric vs. nanometric) of metal additive. For thermal dehydrogenation the average apparent activation energy of Stage I (LiAlH_4 (solid)→1/3Li_3AlH_6 + 2/3Al + H_2) is reduced from the range 76 to 96 kJ/mol for the μ-Fe additive to about 60 kJ/mol for the n-Fe additive. For Stage Ⅱ dehydrogenation (l/3Li_3AlH_6 → LiH+l/3Al + 0.5H_2) the average apparent activation energy is within the range 77-93 kj/mol, regardless of the particle size of the Fe additive (μ-Fe vs. n-Fe). The n-Fe and n-Ni additives, the latter used for comparison, provide nearly identical enhancement of dehydrogenation rate during isothermal dehydrogenation at 100 ℃. Ball milled (LiAlH_4 + 5 wt.% n-Fe) slowly self-discharges up to ~5 wt.% H_2 during storage at room temperature (RT), 40 and 80 ℃. Fully dehydrogenated (LiAlH_4 + 5 wt.% n-Fe) has been partially rehydrogenated up to 0.5 wt.% H_2 under 100 bar/160℃/24 h. However, the rehydrogenation parameters are not optimized yet.
机译:含有5 wt。%的纳米Fe(n-Fe)的LiAlH_4通过在高能球磨过程中连续解吸氢(H_2),在研磨5 h后达到〜3.5 wt。%H_2,表现出深刻的机械脱氢作用。相反,在低能量研磨含n-Fe的LiAlH_4时未观察到H_2解吸。同样,在高能球磨过程中,对于含有微米级Fe(μ-Fe)的LiAlH_4以及微米级和纳米级Ni(μ-Ni和n-Ni)添加剂,H_2均不会发生解吸。 X射线衍射研究表明,对于铁和镍添加剂,球磨导致LiAlH_4的晶格扩展程度不同。大于1%的体积晶格膨胀会导致LiAlH_4严重失稳,并在铣削过程中根据以下反应连续发生H_2解吸:LiAlH_4(固体)→V3Li_3AlH_6 + 2 / 3A1 + H_2。假设Fe离子能够通过机械能的作用而溶解在LiAlH_4的晶格中,从而替代Al离子并形成替代固溶体。溶解的金属离子的量主要取决于在规定的研磨时间内每单位质量粉末产生的研磨总能量,例如添加离子的类型。 Fe对Ni以及金属添加剂的粒度(微米对纳米)。对于热脱氢,阶段I的平均表观活化能(LiAlH_4(固体)→1 / 3Li_3AlH_6 + 2 / 3Al + H_2)从μ-Fe添加剂的范围从76降低至96 kJ / mol,降至约60 kJ / mol用于n-Fe添加剂。对于第二阶段脱氢(1 / 3Li_3AlH_6→LiH + 1 / 3Al + 0.5H_2),平均表观活化能在77-93 kj / mol的范围内,与铁添加剂的粒径无关(μ-Fe对n -Fe)。用于比较的n-Fe和n-Ni添加剂在100℃等温脱氢过程中提供了几乎相同的脱氢速率提高。球磨(LiAlH_4 + 5 wt。%n-Fe)在室温(RT),40和80℃储存期间,缓慢自放电直至〜5 wt。%H_2。在100 bar / 160℃/ 24 h下,已完全脱氢(LiAlH_4 + 5 wt。%n-Fe)进行了部分再氢化,直至0.5 wt。%H_2。但是,再氢化参数尚未优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号