...
首页> 外文期刊>Dalton transactions: An international journal of inorganic chemistry >CO2 adsorption-induced structural changes in coordination polymer ligands elucidated via molecular simulations and experiments
【24h】

CO2 adsorption-induced structural changes in coordination polymer ligands elucidated via molecular simulations and experiments

机译:通过分子模拟和实验阐明了CO2吸附诱导的配位聚合物配体的结构变化

获取原文
获取原文并翻译 | 示例

摘要

Aiming to elucidate guest-induced structural changes in the coordination polymer CPL-2, grand canonical Monte Carlo (GCMC) simulations were used to predict CO2 loadings in this material, and the results were compared with experimental isotherms. Our calculations suggest that CPL-2 exhibits more pronounced CO2-induced structural changes than previously reported. As the initial evidence, the isotherm simulated in the previously reported CPL-2 structure (experimentally resolved from X-ray diffraction in the "as-synthesized" CPL-2) underestimated the measured CO2 loadings at high pressure, indicating that CPL-2 might undergo structural changes that enable higher pore volumes at high pressure. GCMC simulations in CPL-2 structures considering moderate unit cell expansions reported in the literature still underestimated high-pressure experimental loadings. However, considering an incremental rotation of the CPL-2 bipyridyl pillars with increasing CO2 pressure, we were able to trace the measured isotherm with the simulation data. Computational analysis shows that ligand rotation in CPL-2 enables higher pore volumes, which, in turn, accommodate more CO2 as the gas pressure increases. Desorption measurements suggest that hysteresis in the CO2 isotherm of CPL-2 may also be linked to ligand rotation, and the measured adsorption/desorption cycles show that the rotation is reversible. Based on our simulations for CPL-4 and CPL-5 and previously reported experimental data, it is likely that these materials, which differ from CPL-2 in the bipyridyl ligand, behave similarly in the presence of CO2. Our results help understand the behavior of these materials, which present the kind of structural changes that could be potentially exploited to enhance the CO2 working capacity of ultra-microporous materials for carbon capture applications.
机译:为了阐明客体引起的配位聚合物CPL-2中的结构变化,采用大规范蒙特卡洛(GCMC)模拟来预测这种材料中的CO2含量,并将结果与​​实验等温线进行了比较。我们的计算表明,CPL-2与以前报道的相比,具有更明显的CO2诱导的结构变化。作为初步证据,在先前报道的CPL-2结构中模拟的等温线(通过“合成后的” CPL-2的X射线衍射实验解析)低估了高压下测得的CO2负荷,表明CPL-2可能进行结构更改,使高压下的孔体积更大。文献中报道的考虑中等单位细胞膨胀的CPL-2结构中的GCMC模拟仍然低估了高压实验负荷。但是,考虑到CPL-2双吡啶柱随着CO2压力的增加而旋转的增加,我们能够利用模拟数据来追踪测得的等温线。计算分析表明,CPL-2中的配体旋转可实现更高的孔体积,进而随着气压的增加而容纳更多的CO2。解吸测量结果表明,CPL-2的CO2等温线中的磁滞现象也可能与配体旋转有关,并且测得的吸附/解吸循环表明旋转是可逆的。根据我们对CPL-4和CPL-5的模拟以及先前报道的实验数据,这些材料在联吡啶配体中与CPL-2不同,它们可能在存在CO2的情况下表现相似。我们的结果有助于理解这些材料的行为,这些行为提出了可能会被利用来增强超微孔材料在碳捕集应用中的二氧化碳工作能力的结构变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号