首页> 外文期刊>Dalton transactions: An international journal of inorganic chemistry >Effects of mutating aromatic surface residues of the heme domain of human sulfite oxidase on its heme midpoint potential, intramolecular electron transfer, and steady-state kinetics
【24h】

Effects of mutating aromatic surface residues of the heme domain of human sulfite oxidase on its heme midpoint potential, intramolecular electron transfer, and steady-state kinetics

机译:亚硫酸盐氧化酶血红素结构域芳香表面残基突变对其血红素中点电势,分子内电子转移和稳态动力学的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Human sulfite oxidase (hSO), an essential molybdoheme enzyme, catalyzes the oxidation of toxic sulfite to sulfate. The proposed catalytic cycle includes two, one-electron intramolecular electron transfers (IET) between the molybdenum (Mo) and the heme domains. Rapid IET rates are ascribed to conformational changes that bring the two domains into close proximity to one another. Previous studies of hSO have focused on the roles of conserved residues near the Mo active site and on the tether that links the two domains. Here four aromatic surface residues on the heme domain (phenylalanine 57 (F57), phenylalanine 79 (F79), tyrosine 83 (Y83), and histidine 90 (H90)) have been mutated, and their involvement in IET rates, the heme midpoint potential, and the catalytic activity of hSO have been investigated using laser flash photolysis, spectroelectrochemistry, and steady-state kinetics, respectively. The results indicate that the size and hydrophobicity of F57 play an important role in modulating the heme potential and that F57 also affects the IET rates. The data also suggest that important interactions of H90 with a heme propionate group destabilize the Fe(iii) state of the heme. The positive charge on H90 at pH ≤ 7.0 may decrease the electrostatic interaction between the Mo and heme domains, thereby decreasing the IET rates of wt hSO at low pH. Lastly, mutations of F79 and Y83, which are located on the surface of the heme domain, but not in direct contact with the heme or the propionate groups, have little effect on either IET or the heme potential.
机译:人亚硫酸盐氧化酶(hSO)是必不可少的钼血红素酶,催化有毒亚硫酸盐氧化为硫酸盐。提议的催化循环包括在钼(Mo)和血红素域之间的两个单电子分子内电子转移(IET)。迅速的IET率归因于构象变化,这使两个域彼此接近。以前的hSO研究集中在Mo活性位点附近的保守残基的作用以及连接这两个域的系链上。血红素结构域上的四个芳族表面残基(苯丙氨酸57(F57),苯丙氨酸79(F79),酪氨酸83(Y83)和组氨酸90(H90))已经突变,它们参与了IET发生率,血红素中点电位,并分别使用激光闪光光解法,光谱电化学法和稳态动力学研究了hSO的催化活性。结果表明,F57的大小和疏水性在调节血红素电位中起着重要作用,并且F57也影响IET的发生率。数据还表明,H90与丙酸血红素基团的重要相互作用会破坏血红素的Fe(iii)状态。 pH≤7.0时H90上的正电荷可能会降低Mo和血红素结构域之间的静电相互作用,从而降低低pH下wt hSO的IET速率。最后,位于血红素结构域表面但未与血红素或丙酸酯基团直接接触的F79和Y83突变对IET或血红素电位几乎没有影响。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号