...
首页> 外文期刊>The Journal of Experimental Biology >Adaptive plasticity of spino-extraocular motor coupling during locomotion in metamorphosing Xenopus laevis
【24h】

Adaptive plasticity of spino-extraocular motor coupling during locomotion in metamorphosing Xenopus laevis

机译:变形非洲爪蟾运动过程中脊髓-眼外运动耦合的自适应可塑性

获取原文
获取原文并翻译 | 示例

摘要

During swimming in the amphibian Xenopus laevis, efference copies of rhythmic locomotor commands produced by the spinal central pattern generator (CPG) can drive extraocular motor output appropriate for producing image-stabilizing eye movements to offset the disruptive effects of self-motion. During metamorphosis, X. laevis remodels its locomotor strategy from larval tail-based undulatory movements to bilaterally synchronous hindlimb kicking in the adult. This change in propulsive mode results in head/body motion with entirely different dynamics, necessitating a concomitant switch in compensatory ocular movements from conjugate left-right rotations to non-conjugate convergence during the linear forward acceleration produced during each kick cycle. Here, using semi-intact or isolated brainstem/spinal cord preparations at intermediate metamorphic stages, we monitored bilateral eye motion along with extraocular, spinal axial and limb motor nerve activity during episodes of spontaneous fictive swimming. Our results show a progressive transition in spinal efference copy control of extraocular motor output that remains adapted to offsetting visual disturbances during the combinatorial expression of bimodal propulsion when functional larval and adult locomotor systems co-exist within the same animal. In stages at metamorphic climax, spino-extraocular motor coupling, which previously derived from axial locomotor circuitry alone, can originate from both axial and de novo hindlimb CPGs, although the latter's influence becomes progressively more dominant and eventually exclusive as metamorphosis terminates with tail resorption. Thus, adaptive interactions between locomotor and extraocular motor circuitry allows CPG-driven efference copy signaling to continuously match the changing spatio-temporal requirements for visual image stabilization throughout the transitional period when one propulsive mechanism emerges and replaces another.
机译:在两栖非洲爪蟾游泳期间,由脊柱中央模式发生器(CPG)产生的节律性运动命令的类似副本可以驱动眼外运动输出,以产生稳定图像的眼球运动,从而抵消自我运动的破坏性影响。在变态期间,X。laevis重塑了其运动策略,从成年幼虫基于尾巴的起伏运动到双侧同步后肢踢动。推进模式的这种变化导致头部/身体的运动具有完全不同的动力学,从而需要在每个脚踏周期中产生的线性向前加速度期间,将眼球的补偿运动从共轭左右旋转切换到非共轭会聚。在这里,在中间变态阶段使用半完整或孤立的脑干/脊髓制备,我们在自发虚构游泳期间监测了双眼的运动以及眼外,脊柱轴向和肢体运动神经活动。我们的研究结果表明,在同一只动物中同时存在功能性幼虫和成年运动系统时,眼外运动输出的脊柱后凸复制控制逐渐过渡,在双峰推进组合表达过程中仍能抵消视觉障碍。在变质高潮阶段,以前仅来自轴向运动电路的脊柱-眼外运动耦合可能源自轴向和从头后肢CPG,尽管后者的影响逐渐变得占主导地位,并最终由于变态终止于尾部吸收而最终排他。因此,自发运动和眼外运动电路之间的自适应交互作用使CPG驱动的参考拷贝信号能够在一个推进机制出现并替代另一个推进机制的整个过渡时期内,持续匹配不断变化的时空要求,以实现视觉图像稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号