首页> 美国卫生研究院文献>The Journal of Physiology >Developmental segregation of spinal networks driving axial- and hindlimb-based locomotion in metamorphosing Xenopus laevis
【2h】

Developmental segregation of spinal networks driving axial- and hindlimb-based locomotion in metamorphosing Xenopus laevis

机译:在变形非洲爪蟾中驱动基于轴向和后肢的运动的脊柱网络发育分离

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Amphibian metamorphosis includes a complete reorganization of an organism's locomotory system from axial-based swimming in larvae to limbed propulsion in the young adult. At critical stages during this behavioural switch, larval and adult motor systems operate in the same animal, commensurate with a gradual and dynamic reconfiguration of spinal locomotor circuitry. To study this plasticity, we have developed isolated preparations of the spinal cord and brainstem from pre- to post-metamorphic stages of the amphibian Xenopus laevis, in which spinal motor output patterns expressed spontaneously or in the presence of NMDA correlate with locomotor behaviour in the freely swimming animal. Extracellular ventral root recordings along the spinal cord of pre-metamorphic tadpoles revealed motor output corresponding to larval axial swimming, whereas postmetamorphic animals expressed motor patterns appropriate for bilaterally synchronous hindlimb flexion–extension kicks. However, in vitro recordings from metamorphic climax stages, with the tail and the limbs both functional, revealed two distinct motor patterns that could occur either independently or simultaneously, albeit at very different frequencies. Activity at 0.5–1 Hz in lumbar ventral roots corresponded to bipedal extension–flexion cycles, while the second, faster pattern (2–5 Hz) recorded from tail ventral roots corresponded to larval-like swimming. These data indicate that at intermediate stages during metamorphosis separate networks, one responsible for segmentally organized axial locomotion and another for more localized appendicular rhythm generation, coexist in the spinal cord and remain functional after isolation in vitro. These preparations now afford the opportunity to explore the cellular basis of locomotor network plasticity and reconfiguration necessary for behavioural changes during development.
机译:两栖动物的蜕变包括生物体运动系统的完全重组,从幼虫的轴向游泳到年轻成年人的四肢推进。在这种行为转换的关键阶段,幼虫和成年运动系统在同一只动物中运行,与脊髓运动电路的逐渐和动态重新配置相对应。为了研究这种可塑性,我们已经开发了两栖动物爪蟾变态前至变质后阶段的脊髓和脑干分离制剂,其中脊髓运动输出模式自发表达或在存在NMDA时与运动行为有关。自由游泳的动物。沿亚变态前the的脊髓的胞外腹根记录显示出与幼虫轴向游动相对应的运动输出,而变态后动物则表现出适合于双侧同步后肢屈伸运动的运动模式。但是,从变态高潮阶段开始的体外记录中,尾巴和四肢都起作用,揭示了两个不同的运动模式,它们可以独立发生或同时发生,尽管频率非常不同。腰腹根部在0.5–1 Hz处的活动对应于双足伸展-屈曲周期,而尾腹根部记录的第二个更快的模式(2–5 Hz)则对应于幼虫状游泳。这些数据表明,在变态的中间阶段,分离的网络在脊髓中共存,并且在体外分离后仍然起作用,其中一个网络负责分段组织的轴向运动,另一个负责更局部的阑尾节律的产生。现在,这些准备工作提供了探索运动网络可塑性和发育过程中行为改变所必需的细胞重构的细胞基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号