首页> 外文期刊>The Journal of Physiology >Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling
【24h】

Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling

机译:哺乳动物脊髓中屈伸肌相互作用的组织:来自计算模型的见解

获取原文
获取原文并翻译 | 示例
           

摘要

Alternating flexor and extensor activity represents the fundamental property underlying many motor behaviours including locomotion. During locomotion this alternation appears to arise in rhythm-generating circuits and transpires at all levels of the spinal cord including motoneurons. Recent studies in vitro and in vivo have shown that flexor-extensor alternation during locomotion involves two classes of genetically identified, inhibitory interneurons: V1 and V2b. Particularly, in the isolated mouse spinal cord, abrogation of neurotransmission derived by both V1 and V2b interneurons resulted in flexor-extensor synchronization, whereas selective inactivation of only one of these neuron types did not abolish flexor-extensor alternation. After hemisection, inactivation of only V2b interneurons led to the flexor-extensor synchronization, while inactivation of V1 interneurons did not affect flexor-extensor alternation. Moreover, optogenetic activation of V2b interneurons suppressed extensor-related activity, while similar activation of V1 interneurons suppressed both flexor and extensor oscillations. Here, we address these issues using the previously published computational model of spinal circuitry simulating bilateral interactions between left and right rhythm-generating circuits. In the present study, we incorporate V1 and V2b neuron populations on both sides of the cord to make them critically involved in flexor-extensor interactions. The model reproduces multiple experimental data on the effects of hemisection and selective silencing or activation of V1 and V2b neurons and suggests connectivity profiles of these neurons and their specific roles in left-right (V1) and flexor-extensor (both V2b and V1) interactions in the spinal cord that can be tested experimentally.
机译:屈肌和伸肌交替活动代表了包括运动在内的许多运动行为的基本属性。在运动过程中,这种交替似乎出现在节律产生回路中,并在包括运动神经元在内的脊髓的所有水平上形成。近期的体内外研究表明,运动过程中的屈肌-伸肌交替涉及两类经过遗传鉴定的抑制性中间神经元:V1和V2b。特别是,在离体的小鼠脊髓中,由V1和V2b中间神经元衍生的神经传递的废止导致了屈伸同步,而仅这些神经元类型之一的选择性失活并未消除屈伸交替。半截后,仅V2b中间神经元的失活导致了屈伸同步,而V1中间神经的失活并不影响屈伸交替。此外,V2b中间神经元的光遗传学激活抑制伸肌相关的活动,而V1中间神经元的类似激活抑制屈肌和伸肌振荡。在这里,我们使用先前发布的模拟脊髓左右节奏产生电路之间的双向相互作用的脊髓电路计算模型来解决这些问题。在本研究中,我们在脐带的两侧合并了V1和V2b神经元种群,使它们严重参与屈伸肌相互作用。该模型重现了关于半截和V1和V2b神经元选择性沉默或激活的影响的多个实验数据,并提出了这些神经元的连通性概况以及它们在左右(V1)和屈伸肌(V2b和V1相互作用)中的特定作用可以通过实验进行测试的脊髓中

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号