...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Panoramic View of Electrochemical Pseudocapacitor and Organic Solar Cell Research in Molecularly Engineered Energy Materials (MEEM)
【24h】

Panoramic View of Electrochemical Pseudocapacitor and Organic Solar Cell Research in Molecularly Engineered Energy Materials (MEEM)

机译:分子工程能源材料(MEEM)中的电化学伪电容器和有机太阳能电池研究的全景视图

获取原文
获取原文并翻译 | 示例

摘要

Our program on capacitive energy storage is a comprehensive one that combines experimental and computational components to achieve a fundamental understanding of charge storage processes in redox-based materials, specifically transition metal oxides. Some of the highlights of this program are the identification of intercalation pseudocapacitance in Nb2O5, which enables high energy density to be achieved at high rates, and the development of a new route for synthesizing mesoporous films in which preformed nanocrystal building blocks are used in combination with polymer templating. The resulting material architectures have large surface areas and enable electrolyte access to the redox active pore walls, while the interconnected mesoporous film provides good electronic conductivity. Select first-principles density-functional theory studies of prototypical pseudocapacitor materials are reviewed, providing insight into the key physical and chemical features involved in charge transfer and ion diffusion. Rigorous multiscale physical models and numerical tools have been developed and used to reproduce electrochemical properties of carbon-based electrochemical capacitors with the ultimate objective of facilitating the optimization of electrode design. For the organic photovoltaic (OPV) program, our focus has been ongoing beyond the trial-and-error Edisonian approaches that have been responsible for the increase in power conversion efficiency of blend-cast (BC) bulk heterojunction blends of polymers and fullerenes. Our first approach has been to use molecular self-assembly to create the ideal nanometer-scale architecture using thermodynamics rather than relying on the kinetics of spontaneous phase segregation. We have created fullerenes that self-assemble into one-dimensional stacks and have shown that use of these self-assembled fullerenes lead to dramatically enhanced OPV performance relative to fullerenes that do not assemble. We also have created self-assembling conjugated polymers that form gels based on electrically continuous cross-linked micelles in solution, opening the possibility for water-processable "green" production of OPVs based on these materials. Our second approach has been to avoid kinetic control over phase separation by using a sequential processing (SqP) technique to deposit the polymer and fullerene materials in separate deposition steps. The polymer layer is deposited first, using solvents and deposition conditions that optimize the polymer crystallinity for swelling and hole mobility. The fullerene layer is then deposited in a second step from a solvent that swells the polymer but does not dissolve it, allowing the fullerene to penetrate into the polymer underlayer to the desired degree. Careful comparison of composition- and thickness-matched BC and SqP devices shows that SqP not only produces more efficient devices but also leads to devices that behave more consistently.
机译:我们的电容性能量存储程序是一项综合性程序,将实验和计算组件结合在一起,从而对基于氧化还原的材料(特别是过渡金属氧化物)中的电荷存储过程有了基本的了解。该程序的一些亮点是鉴定Nb2O5中的插层伪电容,从而可以高速率实现高能量密度,并开发了一种合成介孔膜的新方法,其中将预先形成的纳米晶体构件与聚合物模板。所得的材料结构具有大的表面积,并使电解质能够进入氧化还原活性孔壁,而互连的中孔膜提供了良好的电子导电性。审查了关于原型伪电容器材料的精选第一性原理密度泛函理论研究,从而洞悉了电荷转移和离子扩散所涉及的关键物理和化学特征。已经开发了严格的多尺度物理模型和数值工具,并将其用于再现碳基电化学电容器的电化学特性,其最终目的是促进电极设计的优化。对于有机光伏(OPV)计划,我们的工作重点仍在试错爱迪生方法之外,后者是提高聚合物和富勒烯共混铸造(BC)本体异质结共混物的功率转换效率的原因。我们的第一种方法是使用分子自组装通过热力学而不是依靠自发相分离的动力学来创建理想的纳米级体系结构。我们已经创建了可自组装成一维堆栈的富勒烯,并表明与未组装的富勒烯相比,使用这些自组装的富勒烯可显着提高OPV性能。我们还创建了可在溶液中基于电连续交联胶束形成凝胶的自组装共轭聚合物,从而为基于这些材料的水可“绿色”生产OPV开辟了可能性。我们的第二种方法是通过使用顺序处理(SqP)技术在单独的沉积步骤中沉积聚合物和富勒烯材料来避免相分离的动力学控制。首先使用溶剂和沉积条件沉积聚合物层,该溶剂和沉积条件可优化聚合物结晶度以实现溶胀和空穴迁移率。然后在第二步骤中从使聚合物溶胀但不溶解的溶剂中沉积富勒烯层,从而使富勒烯渗透到所需的聚合物底层中。仔细比较组成和厚度匹配的BC和SqP器件后发现,SqP不仅可以生产出效率更高的器件,而且还可以使器件表现得更加一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号