...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Effect of Molecule-Surface Reaction Mechanism on the Electronic Characteristics and Photovoltaic Performance of Molecularly Modified Si
【24h】

Effect of Molecule-Surface Reaction Mechanism on the Electronic Characteristics and Photovoltaic Performance of Molecularly Modified Si

机译:分子表面反应机理对分子修饰硅电子特性和光伏性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We report on the passivation properties of molecularly modified, oxide-free Si(111) surfaces. The reaction of 1-alcohol with the H-passivated Si(111) surface can follow two possible paths, nucleophilic substitution (S_N) and radical chain reaction (RCR), depending on adsorption conditions. Moderate heating leads to the S_N reaction, whereas with UV irradiation RCR dominates, with S_N as a secondary path. We show that the site-sensitive S_N reaction leads to better electrical passivation, as indicated by smaller surface band bending and a longer lifetime of minority carriers. However, the surface-insensitive RCR reaction leads to more dense monolayers and, therefore, to much better chemical stability, with lasting protection of the Si surface against oxidation. Thus, our study reveals an inherent dissonance between electrical and chemical passivation. Alkoxy monolayers, formed under UV irradiation, benefit, though, from both chemical and electronic passivation because under these conditions both S_N and RCR occur. This is reflected in longer minority carrier lifetimes, lower reverse currents in the dark, and improved photovoltaic performance, over what is obtained if only one of the mechanisms operates. These results show how chemical kinetics and reaction paths impact electronic properties at the device level. It further suggests an approach for effective passivation of other semiconductors.
机译:我们报告了分子修饰的,无氧化物的Si(111)表面的钝化性能。 1-醇与H钝化的Si(111)表面的反应可遵循两条可能的路径,亲核取代(S_N)和自由基链反应(RCR),具体取决于吸附条件。适度的加热导致S_N反应,而在紫外线照射下,RCR占主导地位,而S_N作为次要路径。我们表明,位点敏感的S_N反应可导致更好的电钝化,如较小的表面带弯曲和较长的少数载流子寿命所示。但是,对表面不敏感的RCR反应导致单分子层更致密,因此具有更好的化学稳定性,并为硅表面提供了持久的抗氧化保护。因此,我们的研究揭示了电钝化和化学钝化之间的内在矛盾。但是,在紫外线照射下形成的烷氧基单分子层既受益于化学钝化,也受益于电子钝化,因为在这些条件下,S_N和RCR均会发生。这反映在更长的少数载流子寿命,在黑暗中更低的反向电流以及改善的光伏性能(超过了仅使用一种机理即可获得的结果)。这些结果表明化学动力学和反应路径如何影响器件级的电子性能。它还提出了一种有效钝化其他半导体的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号