...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Interactions of Dimethoxy Ethane with Li2O2 Clusters and Likely Decomposition Mechanisms for Li-O2 Batteries
【24h】

Interactions of Dimethoxy Ethane with Li2O2 Clusters and Likely Decomposition Mechanisms for Li-O2 Batteries

机译:二甲氧基乙烷与Li2O2团簇的相互作用及Li-O2电池的分解机理

获取原文
获取原文并翻译 | 示例
           

摘要

One of the major problems facing the successful development of Li-O2 batteries is the decomposition of nonaqueous electrolytes, where the decomposition can be chemical or electrochemical during discharge or charge. In this paper, the decomposition pathways of dimethoxy ethane (DME) by the chemical reaction with the major discharge product, Li2O2, are investigated using theoretical methods. The computations were carried out using small Li2O2 clusters as models for potential sites on Li2O2 surfaces. Both hydrogen and proton abstraction mechanisms were considered. The computations suggest that the most favorable decomposition of ether solvents occurs on certain sites on the lithium peroxide surfaces involving hydrogen abstraction followed by reaction with oxygen, which leads to oxidized species such as aldehydes and carboxylates as well as LiOH on the surface of the lithium peroxide. The most favorable site is a Li-O-Li site that may be present on small nanoparticles or as a defect site on a surface. The decomposition route initiated by the proton abstraction from the secondary position of DME by the singlet cluster (O-O site) requires a much larger enthalpy of activation, and subsequent reactions may require the presence of oxygen or superoxide. Thus, pathways involving proton abstraction are less likely than that involving hydrogen abstraction. This type of electrolyte decomposition (electrolyte with hydrogen atoms) may influence the cell performance including the crystal growth, nanomorphologies of the discharge products, and charge overpotential.
机译:Li-O2电池成功开发面临的主要问题之一是非水电解质的分解,其中在放电或充电过程中分解可能是化学的或电化学的。本文采用理论方法研究了二甲氧基乙烷(DME)与主要放电产物Li2O2的化学反应的分解途径。使用小的Li2O2簇作为Li2O2表面潜在位点的模型进行了计算。同时考虑了氢和质子提取机制。计算表明,醚溶剂最有利的分解发生在过氧化锂表面上的某些位置,涉及提取氢,然后与氧气反应,这会导致氧化物质(如醛和羧酸盐以及LiOH)在过氧化锂表面上。最有利的部位是Li-O-Li部位,它可能存在于小的纳米颗粒上或作为表面上的缺陷部位。由单峰簇(O-O位点)从DME的次要位置提取质子而引发的分解途径需要更大的活化焓,而随后的反应可能需要存在氧气或超氧化物。因此,涉及质子提取的途径比涉及氢提取的途径少。这种类型的电解质分解(带有氢原子的电解质)可能会影响电池性能,包括晶体生长,放电产物的纳米形态和电荷超电势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号