首页> 外文会议>International Battery Seminar and Exhibit >To Break or Not to Break: Mechanisms of DMSO Decomposition in Aprotic Li-O2 Battery Electrolytes
【24h】

To Break or Not to Break: Mechanisms of DMSO Decomposition in Aprotic Li-O2 Battery Electrolytes

机译:断裂或不断裂:非质子型Li-O2电池电解质中DMSO分解的机理

获取原文

摘要

Aprotic Li-O2 batteries offer an appealing opportunity to make use of our immediate environment; harvesting the air for oxygen and further reducing and combining it with Li+ to form LiO2 or Li2O2 at the cathode/electrolyte interface. Although the electrochemistry of such a device could in principle be operated reversibly, side-reactions interfere with the main reactions and limit the lifetime of practical Li-O2 cells - so far operated only in pure 02. Preventing these parasitic reactions, in particular by developing more stable solvents/electrolytes, is critical for progress. Dimethyl sulfoxide (DMSO) is a promising solvent for Li-O2 battery applications, but there are conflicting opinions on the long-term stability of DMSO. Experimental work by Kwabi et al. and computational results by Laino et al. suggest that DMSO is readily oxidized to dimethyl sulfone (DMSO2) at Li2O2 surfaces - also forming LiOH. These results have, however, recently been challenged by Schroeder et al., claiming that DMSO is sufficiently stable in the presence of Li2O2, as long as there are no sources of acidic protons present (e.g. from water impurities or carbon electrodes) that can initiate decomposition by forming more reactive hydroperoxy species. More fundamental research on the reaction mechanisms of DMSO with reduced oxygen species is needed to resolve this contradiction. In this work we make use of quantum chemistry calculations to model alternative DMSO decomposition mechanisms in gas, solution phase, and at surfaces. We present reaction energies and barriers to reactions for proton abstraction (DMSO-H), methyl abstraction (DMSO-CH3), and addition reactions (DMSO2) with the aim of better understanding the relative importance of different reaction pathways and the impact of the reactants immediate environment.
机译:非质子型锂氧电池为利用我们的直接环境提供了诱人的机会。收集空气中的氧气,然后进一步还原并与Li +结合,在阴极/电解质界面形成LiO2或Li2O2。尽管这种设备的电化学原理上可以可逆地操作,但副反应会干扰主要反应并限制实际Li-O2电池的寿命-到目前为止仅在纯02中工作。更稳定的溶剂/电解质,对于进步至关重要。二甲基亚砜(DMSO)是用于Li-O2电池应用的有前途的溶剂,但是对于DMSO的长期稳定性存在争议。 Kwabi等人的实验工作。和Laino等人的计算结果。这表明DMSO在Li2O2表面容易被氧化成二甲基砜(DMSO2),也形成LiOH。但是,这些结果最近受到Schroeder等人的挑战,声称只要没有存在可引发的酸性质子源(例如,来自水杂质或碳电极的酸性质子),在Li2O2存在下DMSO就足够稳定。通过形成更多反应性的氢过氧化物而分解。为了解决这一矛盾,需要对具有减少的氧物种的DMSO反应机理进行更基础的研究。在这项工作中,我们利用量子化学计算对气体,溶液相和表面中的DMSO分解机理进行建模。我们提出了质子提取(DMSO-H),甲基提取(DMSO-CH3)和加成反应(DMSO2)的反应能量和反应障碍,目的是更好地理解不同反应途径的相对重要性以及反应物的影响即时环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号