首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Dynamics in Crowded Environments: Is Non-Gaussian Brownian Diffusion Normal?
【24h】

Dynamics in Crowded Environments: Is Non-Gaussian Brownian Diffusion Normal?

机译:拥挤环境中的动力学:非高斯布朗扩散是正常的吗?

获取原文
获取原文并翻译 | 示例
           

摘要

The dynamics of colloids and proteins in dense suspensions is of fundamental importance, from a standpoint of understanding the biophysics of proteins in the cytoplasm and for the many interesting physical phenomena in colloidal dispersions. Recent experiments and simulations have raised questions about our understanding of the dynamics of these systems. Experiments on vesicles in nematic fluids and colloids in an actin network have shown that the dynamics of particles can be "non-Gaussian"; that is, the self-part of the van Hove correlation function, G_s(r,t), is an exponential rather than Gaussian function of r, in regimes where the mean-square displacement is linear in t. It is usually assumed that a linear mean-square displacement implies a Gaussian G_s(r,t). In a different result, simulations of a mixture of proteins, aimed at mimicking the cytoplasm of Escherichia coli, have shown that hydrodynamic interactions (HI) play a key role in slowing down the dynamics of proteins in concentrated (relative to dilute) solutions. In this work, we study a simple system, a dilute tracer colloidal particle immersed in a concentrated solution of larger spheres, using simulations with and without HI. The simulations reproduce the non-Gaussian Brownian diffusion of the tracer, implying that this behavior is a general feature of colloidal dynamics and is a consequence of local heterogeneities on intermediate time scales. Although HI results in a lower diffusion constant, G_s(r,t) is very similar to and without HI, provided they are compared at the same value of the mean-square displacement.
机译:从理解细胞质中蛋白质的生物物理学以及胶体分散体中许多有趣的物理现象的角度出发,稠密悬浮液中胶体和蛋白质的动力学至关重要。最近的实验和仿真提出了关于我们对这些系统动力学的理解的问题。对肌动蛋白网络中向列液和胶体中的囊泡进行的实验表明,粒子的动力学可以是“非高斯”的。也就是说,在均方位移在t中呈线性的状态下,van Hove相关函数的自部分G_s(r,t)是r的指数函数而不是高斯函数。通常假定线性均方位移表示高斯G_s(r,t)。在不同的结果中,旨在模仿大肠杆菌细胞质的蛋白质混合物的模拟显示,流体动力学相互作用(HI)在减慢浓缩(相对于稀释)溶液中蛋白质的动力学中起着关键作用。在这项工作中,我们使用带有和不带有HI的模拟,研究了一个简单的系统,将稀释的示踪胶体粒子浸入较大球体的浓缩溶液中。模拟重现了示踪剂的非高斯布朗扩散,这表明该行为是胶体动力学的一般特征,并且是中间时间尺度上局部异质性的结果。尽管HI导致较低的扩散常数,但是G_s(r,t)与HI和不具有HI都非常相似,前提是要以均方位移的相同值进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号