首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Computational and Experimental Investigation of Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4]
【24h】

Computational and Experimental Investigation of Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4]

机译:掺锂离子液体电解质[pyr14] [TFSI],[pyr13] [FSI]和[EMIM] [BF4]的计算和实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

We employ molecular dynamics (MD) simulation and experiment to investigate the structure, thermodynamics, and transport of N-methyl-N-butylpyrroIidinium bis(trifluoromethylsufonyl)imide ([pyrl4][TFSI]), N-ffiethyl-N-propylpyrrohdinium bis(fluorosufonyl)imide ([pyrl3]-[FSI]), and l-ethyl-3-methylimidazolium boron tetrafluoride ([EMTM][BF4]), as a function of Li-salt mole fraction (0.05 ≤ x_(Li~+) ≤0.33) and temperature (298 K ≤ T ≤ 393 K). Structurally, Li~+ is shown to be solyated by three anion neighbors in [pyrl4] [TFSI] and four anion neighbors in both [pyrl3][FSI]. and [EMIM][BF4], and at alllevels of x_(Li~+) we find the presence of lithium aggregates. Pulsed field gradient spin-echo NMR measurements of diffusion and electrochemical impedance spectroscopy measurements of ionic conductivity are made for the neat ionic liquids as well as 0.5 molal solutions of Li-salt in the ionic liquids. Bulk ionic liquid properties (density, diffusion, viscosity, and ionic conductivity) are obtained with MD simulations and show excellent agreement with experiment. While the diffusion exhibits a systematic decrease with increasing x_(Li~+), the contribution of Li~+ to ionic conductivity increases until reaching a saturation doping level of x_(Li~+)= 0.10. Comparatively, the Li~+ conductivity of [pyrl4] [TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 and 0.3 mS/cm. Our transport results also demonstrate the necessity of long MD simulation runs (~200 ns) to converge transport properties at room temperature. The differences in Li~+ transport are reflected in the residence times of Li* with the anions (τ~(Li/-)), which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyrl3][FSI], Finally, to comment on the relative kinetics of Li~+ transport in each liquid, we find that while the net motion of Li* with its solvation shell (vehicular) significantly contributes to net diffusion in all liquids, the importance of transport through anion exchange increases at high x_(Li~+) and in liquids with large anions.:
机译:我们采用分子动力学(MD)模拟和实验来研究N-甲基-N-丁基吡咯烷鎓双(三氟甲基亚磺酰基)酰亚胺([pyrl4] [TFSI]),N-氟乙基-N-丙基吡咯鎓双(氟磺酰氨基)酰亚胺([pyr3]-[FSI])和1-乙基-3-甲基咪唑鎓四氟化硼([EMTM] [BF4]),作为锂盐摩尔分数的函数(0.05≤x_(Li〜+) ≤0.33)和温度(298 K≤T≤393 K)。从结构上讲,Li〜+被[pyr13] [TFSI]中的三个阴离子邻居和两个[pyr3] [FSI]中的四个阴离子邻居溶解。和[EMIM] [BF4],并且在x_(Li〜+)的所有水平下,我们都发现存在锂聚集体。对纯离子液体以及离子液体中0.5摩尔的锂盐溶液进行了扩散的脉冲场梯度自旋回波NMR测量和离子电导率的电化学阻抗光谱测量。通过MD模拟获得了大体积离子液体的性质(密度,扩散,粘度和离子电导率),并且与实验显示出极好的一致性。尽管扩散随x_(Li〜+)的增加而呈现出系统的减小,但Li〜+对离子电导率的贡献增加,直到达到x_(Li〜+)= 0.10的饱和掺杂水平。相比之下,[pyr14] [TFSI]的Li〜+电导率比其他液体的Li〜+电导率低一个数量级,其他液体的电导率在0.1和0.3 mS / cm之间。我们的运输结果还表明,必须进行较长的MD模拟运行(〜200 ns),才能在室温下收敛运输性能。 Li〜+运移的差异反映在Li *与阴离子(τ〜(Li /-))的停留时间上,对于[pyr14] [TFSI],阴离子的停留时间要大得多(在n处可达100 ns最高掺杂水平),而不是[EMIM] [BF4]或[pyrl3] [FSI]中的掺杂,最后,评论每种液体中Li〜+运移的相对动力学时,我们发现Li *的净运动及其溶剂化壳(车辆)显着地促进了所有液体中的净扩散,在高x_(Li〜+)和具有大阴离子的液体中,通过阴离子交换进行运输的重要性增加了:

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号