首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Molecular Dynamics Investigation of the Various Atomic Force Contributions to the Interfacial Tension at the Supercritical CO2-Water Interface
【24h】

Molecular Dynamics Investigation of the Various Atomic Force Contributions to the Interfacial Tension at the Supercritical CO2-Water Interface

机译:超临界CO2-水界面界面张力的各种原子力贡献的分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Sequestration of carbon dioxide (CO2) in deep, geological formations involves the injection of supercritical CO2 into depleted reservoirs containing fluids such as brine or oil. The interfacial tension (IFT) between supercritical CO2 and the reservoir fluid is an important contribution to the sequestration efficiency. In turn, the IFT is a complex function of the reservoir fluid phase composition, the molecular structure of each reservoir fluid component, and environmental conditions (i.e., temperature and pressure). Molecular dynamics Simulations can be used to probe the dependence of the IFT on these factors, since the IFT can be calculated directly from the simulated atomic forces and velocities at system equilibrium using the mechanical definition of the IFT. Here, we examine the contribution of each type of atomic force to the IFT, including bonded and nonbonded forces, as quantified by the anisotropy of the atomic vtrial tensor. In particular, we first examine a supercritical CO2—pure liquid water interface, at typical reservoir conditions (temperature of 343 K. and pressure of 20 MPa), as a reference state against which CO2—brine systems can be compared. In this system, we note that the interactions between water molecules and between CO2 molecules ("self' interactions) contribute positively to the IFT, while the interactions between water and CO2 molecules ("cross" interactions) contribute negatively to the IFT. We find that the magnitude of the water "self interactions is the dominant contribution. In terms of specific types offerees, we find that nonbonded electrostatic (QQ}, bonded angle-bending, and bonded bond-stretching interactions contribute positively to the IFT, while nonbonded Lennard-Jones (LJ) interactions contribute negatively to the IFT. We also find that the balance between the LJ interactions and the bond-stretching interactions, in particular, plays a significant role in determining the magnitude of the IFT. Using orientational probability distribution functions to study molecular ordering about the interface, we find that the CO2 molecules prefer to lie parallel to the interface at the Gibbs dividing surface (GDS) and that both the CO2 and the water molecules are more ordered at the GDS than in the bulk. Finally, we present an initial study of a CO2—brine system with CaCl2 as the model salt at a concentration of 2.7 M. We quantify the effect of the salt on the molecular orientation of water, and show that this effect leads to an increase in the IFT, relative to the CO2—water system, which is consistent with experimental measurements.
机译:隔离深层地质构造中的二氧化碳(CO2)涉及将超临界CO2注入到包含流体(如盐水或石油)的贫乏储层中。超临界CO2与储层流体之间的界面张力(IFT)是对固存效率的重要贡献。进而,IFT是储层流体相组成,每种储层流体组分的分子结构以及环境条件(即温度和压力)的复杂函数。分子动力学模拟可用于探究IFT对这些因素的依赖性,因为IFT可以使用IFT的机械定义直接根据系统平衡时模拟的原子力和速度来计算。在这里,我们检查了每种类型的原子力对IFT的贡献,包括键合力和非键合力,这由原子心房张量的各向异性量化。特别是,我们首先研究典型储层条件(温度343 K.和压力20 MPa)下的超临界CO2-纯液态水界面,作为可与之比较的CO2-盐水系统的参考状态。在该系统中,我们注意到水分子之间和CO2分子之间的相互作用(“自身”相互作用)对IFT产生正向影响,而水与CO2分子之间的相互作用(“交叉”相互作用)对IFT产生负向影响。水的“自我相互作用的程度是主要的贡献。根据特定类型的要约人,我们发现非键合静电(QQ},键合弯角和键合-拉伸相互作用对IFT产生正向影响,而非键合Lennard-Jones(LJ)相互作用对IFT产生负向影响。发现LJ相互作用和键-​​拉伸相互作用之间的平衡尤其对确定IFT的大小起着重要作用。使用取向概率分布函数研究界面的分子有序性,我们发现CO2分子更喜欢平行于吉布斯分界面(GDS)的界面,并且CO2和水分子在GDS上比在主体上更有序,最后,我们对CaCl2作为浓度为2.7 M的模型盐。我们量化了盐对水分子取向的影响,并表明这种作用导致IFT相对于IFT增加。二氧化碳-水系统,与实验测量结果一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号