首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Grand Potential,Helmholtz Free Energy,and Entropy Calculation in Heterogeneous Cylindrical Pores by the Grand Canonical Monte Carlo Simulation Method
【24h】

Grand Potential,Helmholtz Free Energy,and Entropy Calculation in Heterogeneous Cylindrical Pores by the Grand Canonical Monte Carlo Simulation Method

机译:大正则蒙特卡罗模拟方法计算非均质圆柱孔中的大势,亥姆霍兹自由能和熵

获取原文
获取原文并翻译 | 示例
           

摘要

The adsorption of fluids in porous media is still an open area of research,since no model is able to explain all experimental features.The difficulties rise from the complexity of the real porous materials which present surface heterogeneities,large pore size distributions,and complex networks of interconnected pores.In parallel to experimental efforts trying to produce more ordered porous materials,theoreticians try to introduce more disorder in their models,with the help of molecular simulation for instance.This grand canonical Monte Carlo simulation study concentrates on the adsorption of a simple Lennard-Jones fluid in three porous substrates,to compare the effect of purely geometric heterogeneity (spatial deformation of the external potential) as opposed to purely chemical heterogeneity (amplitude variations of the external potential).This separation is unrealistic,since geometric fluctuations of a real pore diameter along its axis generally induce variations in the amplitude of the external potential created by the pore.However it enables one to compare both effects.In this paper,a thermodynamic integration scheme is applied to a complete set of adsorption/desorption isotherms.The grand potential,free energy,and entropy are calculated,which allows one to discuss the features of the phase diagrams.It is shown that a purely geometric deformation (undulation) of the external potential does not affect the thermodynamic characteristics of the confined fluid.On the other hand,amplitude modulation of the external potential (chemical heterogeneity) strongly distorts the phase diagram.This heterogeneity is actually able to stabilize a "bridgelike" phase which corresponds to an accumulation of molecules in the most attractive region of the pore.
机译:由于没有模型能够解释所有实验特征,因此流体在多孔介质中的吸附仍然是一个开放的研究领域。困难之处在于存在表面异质性,大孔径分布和复杂网络的真实多孔材料的复杂性与尝试制造更多有序的多孔材料的实验工作同时,理论家尝试通过分子模拟等方法在模型中引入更多无序性。这一经典的蒙特卡洛模拟研究集中于简单分子的吸附。 Lennard-Jones流体在三种多孔基质中进行比较,以比较纯几何异质性(外部电势的空间变形)与纯化学异质性(外部电势的振幅变化)的影响。这种分离是不现实的,因为a的几何波动沿其轴的实际孔径通常会引起t振幅的变化由孔隙产生的外部势能。但是,它可以使两种作用进行比较。本文将热力学积分方案应用于全套吸附/解吸等温线。计算了大势能,自由能和熵,可以让我们讨论相图的特征。它表明,外部势能的纯几何变形(波动)不会影响承压流体的热力学特性。另一方面,外部势能的振幅调制(化学实际上,这种异质性能够稳定“桥状”相,该相与分子在孔最吸引区域中的积累相对应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号