首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Beyond lattice models of activated transport in zeolites: High-temperature molecular dynamics of self-diffusion and cooperative diffusion of benzene in NaX
【24h】

Beyond lattice models of activated transport in zeolites: High-temperature molecular dynamics of self-diffusion and cooperative diffusion of benzene in NaX

机译:分子筛中活化传输的晶格模型之外:苯在NaX中的自扩散和协同扩散的高温分子动力学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We employ high-temperature molecular dynamics to investigate self-transport and cooperative transport of benzene in NaX (Si:Al = 1.2). We have refined the benzene-NaX force field for use with our previously developed framework force field for aluminosilicates, which explicitly distinguishes between Si and Al atoms in the frame, and also between oxygen atoms in Si-O-Si and Si-O-Al environments. Energy minimizations and molecular dynamics simulations performed to test the new force field give excellent agreement with experimental data on benzene heats of adsorption, benzene-Na distances, and Na distributions for benzene in NaY (Si:Al = 2.4) and NaX (Si:Al = 1.2). Molecular dynamics simulations are performed over a range of temperatures (600-1500 K) and loadings (infinite dilution to four benzenes per supercage) to evaluate simultaneously the self-diffusivities and cooperative (alternatively Maxwell-Stefan) diffusivities. The simulated diffusivities agree well with pulsed field-gradient NMR and quasi-elastic neutron scattering data. Despite this agreement, we show in the following companion paper that membrane fluxes calculated with our diffusivities overestimate experiments by 1 order of magnitude when support resistance is accounted for in the transport model, and by about 2 orders of magnitude when support resistance is neglected. This discrepancy may arise from the polycrystalline nature of present-day NaX membranes.
机译:我们采用高温分子动力学来研究苯在NaX(Si:Al = 1.2)中的自运输和协同运输。我们已经改进了苯-NaX力场,以与我们先前开发的铝硅酸盐骨架力场一起使用,该力场明确区分了框架中的Si和Al原子,以及Si-O-Si和Si-O-Al中的氧原子环境。为测试新力场而进行的能量最小化和分子动力学模拟与NaY(Si:Al = 2.4)和NaX(Si:Al)中苯的苯吸附热,苯-Na距离和Na分布的实验数据非常吻合= 1.2)。分子动力学模拟是在一定温度(600-1500 K)和载荷(每个超笼中无限稀释至四个苯)的范围内进行的,以同时评估自扩散性和协同(或麦克斯韦-斯特凡)的扩散性。模拟的扩散率与脉冲场梯度NMR和准弹性中子散射数据非常吻合。尽管达成了这一共识,但我们在下面的随笔中显示,当在运输模型中考虑支撑阻力时,用我们的扩散率计算出的膜通量高估了1个数量级,而忽略了支撑阻力时则高了约2个数量级。这种差异可能是由当今的NaX膜的多晶性质引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号