...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Where Is the Electronic Oscillator Strength? Mapping Oscillator Strength across Molecular Absorption Spectra
【24h】

Where Is the Electronic Oscillator Strength? Mapping Oscillator Strength across Molecular Absorption Spectra

机译:电子振荡器的强度在哪里?跨分子吸收光谱映射振荡器强度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra Associated with pi electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing.
机译:太阳能捕获和转换材料的有效性源于其吸收光并将激发能转换为存储在自由载体或化学键中的能量的能力。 Thomas-Reiche-Kuhn(TRK)求和规则要求吸收体的集成(电子)振荡器强度等于结构中电子的总数。典型的分子发色团仅将其振荡器强度的1%置于UV-vis窗口中,因此单个发色团的工作原理约为其理论极限的1%。我们探索了振荡器强度随激励能量的分布情况,以了解这种情况。为此,我们使用熟悉的独立电子模型哈密顿量以及第一性原理电子结构方法。当模型哈密顿量捕获与π电子发色团相关的定性电子光谱时,这些哈密顿量错误地将振荡器强度集中在最少的低能跃迁上。与此相反,先进的电子结构方法将振荡器的强度分布在非常宽的激励能量范围内,这包括与实验一致的跃迁到里德堡和连续态。我们的分析合理化了分子在UV-vis光谱区域的低振荡器强度,这是朝着振荡器强度操纵和聚焦目标迈出的一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号