...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Alternative Approach to Chemical Accuracy: A Neural Networks-Based First-Principles Method for Heat of Formation of Molecules Made of H, C, N, O, F, S, and Cl
【24h】

Alternative Approach to Chemical Accuracy: A Neural Networks-Based First-Principles Method for Heat of Formation of Molecules Made of H, C, N, O, F, S, and Cl

机译:化学准确性的替代方法:一种基于神经网络的第一原理方法,用于分析由H,C,N,O,F,S和Cl组成的分子的形成热

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The neural network correction approach that was previously proposed to achieve the chemical accuracy for first-principles methods is further developed by a combination of the Kennard-Stone sampling and Bootstrapping methods. As a result, the accuracy of the calculated heat of formation is improved further, and moreover, the error bar of each calculated result can be determined. An enlarged database (Chen/13), which contains a total of 539 molecules made of the common elements H, C, N, O, F, S, and Cl, is constructed and is divided into the training (449 molecules) and testing (90 molecules) data sets with the Kennard-Stone sampling method. Upon the neural network correction, the mean absolute deviation (MAD) of the B3LYP/6-311+G(3df,2p) calculated heat of formation is reduced from 10.92 to 1.47 kcal mol~(-1) and 14.95 to 1.31 kcal mol~(-1) for the training and testing data sets, respectively. Furthermore, the Bootstrapping method, a broadly used statistical method, is employed to assess the accuracy of each neural-network prediction by determining its error bar. The average error bar for the testing data set is1.05 kcal mol~(-1), therefore achieving the chemical accuracy. When a testing molecule falls into the regions of the "Chemical Space" where the distribution density of the training molecules is high, its predicted error bar is comparatively small, and thus, the predicted value is accurate as it should be. As a challenge, the resulting neural-network is employed to discern the discrepancy among the existing experimental data.
机译:通过结合Kennard-Stone采样和Bootstrapping方法,进一步开发了先前提出的用于实现第一原理方法化学准确性的神经网络校正方法。结果,进一步提高了所计算出的地层热的精度,并且,能够确定每个所计算出的结果的误差线。构建了一个扩大的数据库(Chen / 13),该数据库总共包含539个由常见元素H,C,N,O,F,S和Cl组成的分子,并将其分为训练(449个分子)和测试Kennard-Stone采样方法(90个分子)数据集。经神经网络校正后,B3LYP / 6-311 + G(3df,2p)计算出的地层热量的平均绝对偏差(MAD)从10.92降低至1.47 kcal mol〜(-1),从14.95降低至1.31 kcal mol 〜(-1)分别用于训练和测试数据集。此外,Bootstrapping方法是一种广泛使用的统计方法,用于通过确定其误差线来评估每个神经网络预测的准确性。测试数据集的平均误差为1.05 kcal mol〜(-1),因此达到了化学精度。当测试分子落入“化学空间”中训练分子的分布密度较高的区域时,其预测误差棒相对较小,因此,预测值应是准确的。挑战在于,使用所得的神经网络来识别现有实验数据之间的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号