...
首页> 外文期刊>The Journal of Chemical Physics >Size-independent neural networks based first-principles method for accurate prediction of heat of formation of fuels
【24h】

Size-independent neural networks based first-principles method for accurate prediction of heat of formation of fuels

机译:基于大小独立的神经网络的基于第一原理方法,用于精确预测燃料的形成热量

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Neural network-based first-principles method for predicting heat of formation (HOF) was previously demonstrated to be able to achieve chemical accuracy in a broad spectrum of target molecules [L. H. Hu et al., J. Chem. Phys. 119, 11501 (2003)]. However, its accuracy deteriorates with the increase in molecular size. A closer inspection reveals a systematic correlation between the prediction error and the molecular size, which appears correctable by further statistical analysis, calling for a more sophisticated machine learning algorithm. Despite the apparent difference between simple and complex molecules, all the essential physical information is already present in a carefully selected set of small molecule representatives. A model that can capture the fundamental physics would be able to predict large and complex molecules from information extracted only from a small molecules database. To this end, a size-independent, multi-step multi-variable linear regression-neural network-B3LYP method is developed in this work, which successfully improves the overall prediction accuracy by training with smaller molecules only. And in particular, the calculation errors for larger molecules are drastically reduced to the same magnitudes as those of the smaller molecules. Specifically, the method is based on a 164-molecule database that consists of molecules made of hydrogen and carbon elements. 4 molecular descriptors were selected to encode molecule's characteristics, among which raw HOF calculated from B3LYP and the molecular size are also included. Upon the size-independent machine learning correction, the mean absolute deviation (MAD) of the B3LYP/6-311+ G(3df, 2p)-calculated HOF is reduced from 16.58 to 1.43 kcal/mol and from 17.33 to 1.69 kcal/mol for the training and testing sets (small molecules), respectively. Furthermore, the MAD of the testing set (large molecules) is reduced from 28.75 to 1.67 kcal/mol. Published by AIP Publishing.
机译:基于神经网络的第一原理方法,用于预测形成的形成热量(HOF),以便能够在广谱的靶分子中实现化学精度[L. H. Hu等,J.Chem。物理。 119,11501(2003)]。然而,其精度随着分子大小的增加而恶化。仔细检查揭示了预测误差与分子大小之间的系统相关性,其通过进一步的统计分析出现可纠正,呼叫更复杂的机器学习算法。尽管简单和复杂的分子之间表观差异,但所有必要的物理信息已经存在于精心挑选的小分子代表中。可以捕获基本物理学的模型能够从仅从小分子数据库中提取的信息预测大型和复杂的分子。为此,在这项工作中开发了尺寸无关的多步多变量线性回归 - 神经网络-B-B3Lyp方法,该方法仅通过用较小的分子训练成功提高了整体预测精度。特别地,较大分子的计算误差随着较小分子的较小分子的大幅减少到与较小分子相同的大小。具体地,该方法基于164分子数据库,该数据库由由氢和碳元素制成的分子组成。选择4分子描述符以编码分子的特征,其中还包括来自B3LYP和分子大小的原料Hof。在独立于独立的机器学习校正时,B3LYP / 6-311 + G(3DF,2P)的平均绝对偏差(MAD)(3DF,2P)-Calculated Hof减少了16.58至1.43千卡/ mol,17.33至1.69千卡/摩尔对于培训和测试集(小分子)。此外,测试组的MAD(大分子)从28.75降至1.67 kcal / mol。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号