...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Magnetic field effect corroborated with docking study to explore photoinduced electron transfer in drug-protein interaction
【24h】

Magnetic field effect corroborated with docking study to explore photoinduced electron transfer in drug-protein interaction

机译:磁场效应与对接研究得到证实,以探索光诱导电子在药物-蛋白质相互作用中的转移

获取原文
获取原文并翻译 | 示例

摘要

Conventional spectroscopic tools such as absorption, fluorescence, and circular dichroism spectroscopy used in the study of photoinduced drug-protein interactions can yield useful information about ground-state and excited-state phenomena. However, photoinduced electron transfer (PET) may be a possible phenomenon in the drug-protein interaction, which may go unnoticed if only conventional spectroscopic observations are taken into account. Laser flash photolysis coupled with an external magnetic field can be utilized to confirm the occurrence of PET and authenticate the spin states of the radicals/radical ions formed. In the study of interaction of the model protein human serum albumin (HSA) with acridine derivatives, acridine yellow (AY) and proflavin (PF~+), conventional spectroscopic tools along with docking study have been used to decipher the binding mechanism, and laser flash photolysis technique with an associated magnetic field (MF) has been used to explore PET. The results of fluorescence study indicate that fluorescence resonance energy transfer takes place from the protein to the acridine-based drugs. Docking study unveils the crucial role of Ser 232 residue of HSA in explaining the differential behavior of the two drugs towards the model protein. Laser flash photolysis experiments help to identify the radicals/radical ions formed in the due course of PET (PF~?, AY~(?-), TrpH ~(?+), Trp~?), and the application of an external MF has been used to characterize their initial spin-state. Owing to its distance dependence, MF effect gives an idea about the proximity of the radicals/radical ions during interaction in the system and also helps to elucidate the reaction mechanisms. A prominent MF effect is observed in homogeneous buffer medium owing to the pseudoconfinement of the radicals/radical ions provided by the complex structure of the protein.
机译:用于研究光诱导药物-蛋白质相互作用的常规光谱学工具(例如吸收,荧光和圆二色谱)可以提供有关基态和激发态现象的有用信息。但是,光诱导电子转移(PET)可能是药物与蛋白质相互作用的一种可能现象,如果仅考虑常规的光谱观察,则可能不会引起注意。可以将激光闪光光解与外部磁场耦合使用,以确认PET的出现并验证形成的自由基/自由基离子的自旋态。在研究模型蛋白人血清白蛋白(HSA)与a啶衍生物,a啶黄(AY)和黄素(PF〜+)的相互作用时,传统的光谱工具以及对接研究已被用于破译结合机理和激光具有相关磁场(MF)的快速光解技术已用于探索PET。荧光研究的结果表明,荧光共振能量从蛋白质转移到the啶基药物上。对接研究揭示了HSA的Ser 232残基在解释两种药物对模型蛋白的差异行为中的关键作用。激光闪光光解实验有助于确定在PET适当过程中形成的自由基/自由基离子(PF〜?,AY〜(?-),TrpH〜(?+),Trp〜?)以及外部MF的应用已被用来表征其初始自旋状态。由于其距离依赖性,MF效应提供了有关系统相互作用期间自由基/自由基离子的接近度的想法,并且还有助于阐明反应机理。由于蛋白质复杂结构提供的自由基/自由基离子的假限制,在均相缓冲液中观察到了显着的MF效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号