首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >A Coupled Polarization-Matrix Inversion and Iteration Approach for Accelerating the Dipole Convergence in a Polarizable Potential Function
【24h】

A Coupled Polarization-Matrix Inversion and Iteration Approach for Accelerating the Dipole Convergence in a Polarizable Potential Function

机译:极化极化函数的耦合极化矩阵求逆和迭代方法,用于加速极化势函数中的偶极子收敛。

获取原文
获取原文并翻译 | 示例
       

摘要

A coupled polarization-matrix inversion and iteration (CPII) method is described to achieve and accelerate the convergence of induced dipoles for condensed phase systems employing polarizable intermolecular potential functions (PIPF). The present PIPF is based on the Thole interaction dipole model in which all atomic pair interactions are considered, including those that are directly bonded covalently. Although induced dipoles can be obtained both by inverting a 3N x 3N polarization-matrix where N is the number of polarizable sites, or by a direct iterative approach, the latter approach is more efficient computationally for large systems in molecular dynamics simulations. It was found that induced dipole moments failed to converge in the direct iterative approach if 1-2, 1-3, and 1-4 intramolecular interactions are included in the Thole model. However, it is necessary to include all intramolecular interactions in the Thole model to yield the correct molecular anisotropic polarizability tensor. To solve this numerical stability problem, we reformulated the Thole interaction dipole model in terms of molecular block matrices, which naturally leads to a coupled, preconditioning algorithm that involves a polarization-matrix inversion term to account for intramolecular interactions, and an iterative procedure to incorporate the mutual polarization effects between different molecules. The CPII method is illustrated by applying to cubic boxes of water and NMA molecules as well as an alanine pentapeptide configuration, and it was shown that the CPII method can achieve convergence for the dipole induction polarization rapidly in all cases, whereas the direct iterative approach failed to reach convergence in these cases. In addition, the CPII reduces the overall computational costs by decreasing the number of iteration steps in comparison with the direct iteration approach in which intramolecular bonded interactions are excluded to ensure that induced dipole convergence is obtained.
机译:描述了一种耦合极化矩阵求逆和迭代(CPII)方法,以实现并加速采用可极化分子间势函数(PIPF)的凝聚相系统的感应偶极子的收敛。本PIPF基于Thole相互作用偶极子模型,其中考虑了所有原子对相互作用,包括直接共价键合的那些。尽管可以通过反转3N x 3N极化矩阵(其中N为极化位置的数目)或通过直接迭代方法来获得感应偶极子,但对于分子动力学模拟中的大型系统而言,后一种方法在计算上更为有效。发现如果在Thole模型中包含1-2、1-3和1-4分子内相互作用,则诱导的偶极矩无法在直接迭代方法中收敛。但是,有必要在Thole模型中包括所有分子内相互作用,以产生正确的分子各向异性极化率张量。为了解决这个数值稳定性问题,我们根据分子嵌段矩阵重新构造了Thole相互作用偶极子模型,这自然导致了耦合的预处理算法,该算法涉及极化矩阵求逆项以解释分子内的相互作用,并引入了迭代程序不同分子之间的相互极化作用。将CPII方法应用于水和NMA分子的立方盒以及丙氨酸五肽构型进行了说明,结果表明CPII方法可以在所有情况下快速实现偶极感应极化的收敛,而直接迭代方法失败了在这些情况下达到收敛。此外,与直接迭代方法相比,CPII通过减少迭代步骤数来降低总体计算成本,在直接迭代方法中,分子内键合相互作用被排除在外,以确保获得诱导的偶极子收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号