首页> 外文学位 >An efficient algorithm combining cell multipole and multigrid methods for rapid evaluation of dipole iteration in polarizable force fields.
【24h】

An efficient algorithm combining cell multipole and multigrid methods for rapid evaluation of dipole iteration in polarizable force fields.

机译:一种将单元多极和多网格方法相结合的有效算法,可快速评估可极化力场中的偶极子迭代。

获取原文
获取原文并翻译 | 示例

摘要

There has been continuing effort to develop polarizable force fields for computational studies of biological systems. Applications of polarizable models in molecular dynamics simulations include liquid water, ionic systems, alcohols, solvated proteins, interfacial systems and membrane systems. An overview of the advances in development of these polarizable force fields to date is presented. Recent studies have shown that the dynamic response to inhomogeneous environment represented by the explicit inclusion of polarization is necessary for more realistic descriptions of biosystems. Explicitly including polarization effects in force fields requires self-consistent iteration to evaluate induced dipole moments. However, the demanding computational cost using traditional solvers limits the system sizes that can be fully described with explicit polarization. To make this calculation more tractable for large-scale systems, an efficient method for computation of polarizable interactions is needed.;An algorithm combining hierarchical cell multipole (CMM) and multigrid (MG) schemes is developed for fast computation of these interactions, using polarizable point dipoles. This scheme separates polarizable interactions into direct and indirect components, where we derived the CMM electric field terms for dipolar systems to handle long-range interactions. A fast multigrid solver is applied to further increase computational efficiency in solving these induced dipolar calculations. Performance of various iterative solvers, Jacobi, Gauss-Seidel, successive over-relaxation, conjugate gradient, and our newly developed multigrid-multipole (MG-CMM) solver are compared for test cases of varying system sizes to demonstrate the efficiency of this algorithm for a uniform distribution. The MG-CMM algorithm achieves fast convergence with reasonable accuracy. A matrix version of the cell multipole method is derived and extended to include polarizable dipoles. In order to extend MG-CMM to treat non-uniform distributions, we have casted the cell multipole method in matrix form and introduce an algebraic multigrid and matrix-based cell multipole (AMG-CMMm) scheme to reduce the number of iterations to self-consistency. For further speedup, AMG-CMMm can be parallelized and the sparse matrix storage can be optimized. An efficient implementation of this technique will significantly reduce the number of dipole iterations for large polarizable systems and help enhance the ability of force field methods to accurately describe biomolecular processes.
机译:一直在努力开发用于生物系统的计算研究的可极化力场。可极化模型在分子动力学模拟中的应用包括液态水,离子系统,醇,溶剂化蛋白质,界面系统和膜系统。概述了迄今为止这些可极化力场的发展进展。最近的研究表明,对极化的明确包含所代表的对不均匀环境的动态响应对于生物系统的更现实的描述是必要的。在力场中明确包含极化效应需要自洽迭代来评估感应偶极矩。但是,使用传统求解器的高计算成本限制了可以用显式极化完全描述的系统大小。为了使该计算对于大型系统更易于处理,需要一种有效的可极化相互作用的计算方法。;开发了一种结合了分层单元多极(CMM)和多网格(MG)方案的算法,可使用极化方法快速计算这些相互作用点偶极子。该方案将可极化的相互作用分为直接和间接的分量,在这里我们导出了用于偶极系统的CMM电场项,以处理远程相互作用。快速多网格求解器用于进一步提高计算效率,以解决这些诱发的偶极子计算。比较了各种迭代求解器,Jacobi,Gauss-Seidel,连续过度松弛,共轭梯度和我们新开发的多网格多极(MG-CMM)求解器的性能,以测试各种系统尺寸的测试用例,从而证明了该算法的有效性。均匀分布。 MG-CMM算法以合理的精度实现了快速收敛。导出了单元多极方法的矩阵形式,并将其扩展为包括可极化的偶极子。为了扩展MG-CMM以处理非均匀分布,我们将单元多极方法转换为矩阵形式,并引入了代数多网格和基于矩阵的单元多极(AMG-CMMm)方案,以减少迭代次数,一致性。为了进一步提高速度,可以并行化AMG-CMMm并优化稀疏矩阵存储。该技术的有效实施将大大减少大型极化系统的偶极子迭代次数,并有助于增强力场方法准确描述生物分子过程的能力。

著录项

  • 作者

    Dinh-Truong, Thuy Linh.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Biology Molecular.;Biophysics General.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号