【24h】

Strange kinetics of the C2H6+CNreaction explained

机译:C2H6 + CN反应的奇怪动力学解释

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we employ state of the art quantum chemical and transition state theory methods in making a priori kinetic predictions for the abstraction reaction of CN with ethane. This reaction, which has been studied experimentally over an exceptionally broad range of temperature (25-1140 K), exhibits an unusually strong minimum in the rate constant near 200 K. The present theoretical predictions, which are based on a careful consideration of the two distinct transition state regimes, quantitatively reproduce the measured rate constant over the full range of temperature, with no adjustable parameters. At low temperatures, the rate-determining step for such radical-molecule reactions involves the formation of a weakly bound van der Waals complex. At higher temperatures, the passage over a subthreshold saddle point on the potential energy surface, related to the formation and dissolution of chemical bonds, becomes the rate-determining step. The calculations illustrate the changing importance of the two transition states with increasing temperature and also clearly demonstrate the need for including accurate treatments of both transition states. The present two transition state model is an extension of that employed in our previous work on the C2H4 + OH reaction [J. Phys. Chem. A 2005, 109, 6031]. It incorporates direct ab initio evaluations of the potential in classical phase space integral based calculations of the fully coupled anharmonic transition state partition functions for both transition states. Comparisons with more standard rigid-rotor harmonic oscillator representations for the "inner" transition state illustrate the importance of variational, anharmonic, and nonrigid effects. The effects of tunneling through the "inner" saddle point and of dynamical correlations between the two transition states are also discussed. A study of the kinetic isotope effect provides a further test for the present two transition state model.
机译:在本文中,我们采用最先进的量子化学和过渡态理论方法对CN与乙烷的抽象反应进行先验动力学预测。该反应已在非常宽的温度范围(25-1140 K)上进行了实验研究,在200 K附近的速率常数中表现出异常强的最小值。目前的理论预测是基于对这两个因素的仔细考虑而得出的不同的过渡态状态,在没有可调参数的情况下,定量地再现了整个温度范围内测得的速率常数。在低温下,这种自由基-分子反应的速率确定步骤涉及形成弱结合的范德华复合物。在较高温度下,与化学键的形成和溶解有关的势能表面上亚阈值鞍点上的通过成为速率确定步骤。这些计算说明了两个过渡态随温度升高而变化的重要性,并且还清楚地表明需要包括对两个过渡态的精确处理。目前的两个过渡状态模型是我们先前关于C2H4 + OH反应的工作模型的扩展[J.物理化学A 2005,109,6031]。它结合了基于经典相空间积分的势的从头算起的直接评估,该计算基于两个跃迁状态的完全耦合非谐波跃迁状态分配函数。与更标准的刚性转子谐波振荡器表示形式的“内部”过渡状态的比较说明了变分,非谐波和非刚性效应的重要性。还讨论了隧穿“内部”鞍点的影响以及两个过渡状态之间的动力学相关性。动力学同位素效应的研究为当前的两个过渡态模型提供了进一步的检验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号