首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Endogenous Gradients of Resting Potential Instructively Pattern Embryonic Neural Tissue via Notch Signaling and Regulation of Proliferation
【24h】

Endogenous Gradients of Resting Potential Instructively Pattern Embryonic Neural Tissue via Notch Signaling and Regulation of Proliferation

机译:内源性梯度的Notch信号和增殖调节的潜在潜在教学模式的胚胎神经组织。

获取原文
获取原文并翻译 | 示例
           

摘要

Biophysical forces play important roles throughout embryogenesis, but the roles of spatial differences in cellular resting potentials during large-scale brain morphogenesis remain unknown. Here, we implicate endogenous bioelectricity as an instructive factor during brain patterning in Xenopus laevis. Early frog embryos exhibit a characteristic hyperpolarization of cells lining the neural tube; disruption of this spatial gradient of the transmembrane potential (V-mem) diminishes or eliminates the expression of early brain markers, and causes anatomical mispatterning of the brain, including absent or malformed regions. This effect is mediated by voltage-gated calcium signaling and gap-junctional communication. In addition to cell-autonomous effects, we show that hyperpolarization of transmembrane potential (V-mem) in ventral cells outside the brain induces upregulation of neural cell proliferation at long range. Misexpression of the constitutively active form of Notch, a suppressor of neural induction, impairs the normal hyperpolarization pattern and neural patterning; forced hyperpolarization by misexpression of specific ion channels rescues brain defects induced by activated Notch signaling. Strikingly, hyperpolarizing posterior or ventral cells induces the production of ectopic neural tissue considerably outside the neural field. The hyperpolarization signal also synergizes with canonical reprogramming factors (POU and HB4), directing undifferentiated cells toward neural fate in vivo. These data identify a new functional role for bioelectric signaling in brain patterning, reveal interactions between V-mem and key biochemical pathways (Notch and Ca2+ signaling) as the molecular mechanism by which spatial differences of V-mem regulate organogenesis of the vertebrate brain, and suggest voltage modulation as a tractable strategy for intervention in certain classes of birth defects.
机译:生物物理力在整个胚胎发生过程中都起着重要作用,但是在大规模脑形态发生过程中细胞静息电位的空间差异所起的作用仍然未知。在这里,我们将内源性生物电作为指示性因素在非洲爪蟾的大脑构图过程中起到了指导作用。早期的青蛙胚胎表现出神经管内衬细胞的特征性超极化。跨膜电位(V-mem)的这种空间梯度的破坏会减少或消除早期大脑标志物的表达,并导致大脑的解剖学错位,包括缺少或畸形的区域。该作用由电压门控钙信号传导和间隙连接通讯介导。除细胞自主作用外,我们显示大脑外腹细胞中跨膜电位(V-mem)的超极化可诱导神经细胞增殖的长程上调。 Notch的组成型活性形式(神经抑制因子)的错误表达会损害正常的超极化模式和神经模式。通过错误表达特定离子通道而引起的强极化可以挽救由激活的Notch信号诱导的脑部缺陷。令人惊讶的是,超极化的后部或腹侧细​​胞会在神经野外大量诱导异位神经组织的产生。超极化信号还与规范的重编程因子(POU和HB4)协同作用,将未分化的细胞导向体内的神经命运。这些数据确定了生物电信号传导在大脑模式中的新功能作用,揭示了V-mem与关键生化途径(Notch和Ca2 +信号传导)之间的相互作用,这是V-mem空间差异调节脊椎动物大脑器官发生的分子机制。建议将电压调制作为干预某些类别的先天缺陷的简便策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号