...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Systematic Shifts in the Balance of Excitation and Inhibition Coordinate the Activity of Axial Motor Pools at Different Speeds of Locomotion
【24h】

Systematic Shifts in the Balance of Excitation and Inhibition Coordinate the Activity of Axial Motor Pools at Different Speeds of Locomotion

机译:在不同运动速度下,励磁和抑制平衡的系统变化协调了轴向运动池的活动

获取原文
获取原文并翻译 | 示例
           

摘要

An emerging consensus from studies of axial and limb networks is that different premotor populations are required for different speeds of locomotion. An important but unresolved issue is why this occurs. Here, we perform voltage-clamp recordings from axial motoneurons in larval zebrafish during "fictive" swimming to test the idea that systematic differences in the biophysical properties of axial motoneurons are associated with differential tuning in the weight and timing of synaptic drive, which would help explain premotor population shifts. We find that increases in swimming speed are accompanied by increases in excitation preferentially to lower input resistance (Rin) motoneurons, whereas inhibition uniformly increases with speed to all motoneurons regardless of Rin. Additionally, while the timing of rhythmic excitatory drive sharpens within the pool as speed increases, there are shifts in the dominant source of inhibition related to Rin. At slow speeds, anti-phase inhibition is larger throughout the pool. However, as swimming speeds up, inhibition arriving in-phase with local motor activity increases, particularly in higher Rin motoneurons. Thus, in addition to systematic differences in the weight and timing of excitation related to Rin and speed, there are also speed-dependent shifts in the balance of different sources of inhibition, which is most obvious in more excitable motor pools. We conclude that synaptic drive is differentially tuned to the biophysical properties of motoneurons and argue that differences in premotor circuits exist to simplify the coordination of activity within spinal motor pools during changes in locomotor speed.
机译:轴向和肢体网络研究的一个新兴共识是,不同的运动速度需要不同的运动前人群。一个重要但尚未解决的问题是为什么会发生这种情况。在这里,我们在“虚拟”游泳期间从幼虫斑马鱼的轴向运动神经元执行电压钳记录,以测试这种想法,即轴向运动神经元的生物物理特性的系统性差异与突触驱动的重量和时间的微调有关,这将有所帮助解释运动前人群的变化。我们发现游泳速度的增加优先于较低输入电阻(Rin)的运动神经元引起的兴奋性增加,而对所有运动神经元的抑制均随速度而均匀增加,而与Rin无关。此外,尽管随着速度的增加,节奏性兴奋性驱动的时间会在池中锐化,但与Rin相关的主要抑制源却发生了变化。在低速下,整个池中的反相抑制作用更大。但是,随着游泳速度的加快,与局部运动活动同相到达的抑制作用会增加,尤其是在较高的Rin运动神经元中。因此,除了与Rin和速度有关的激励的权重和时机上的系统差异外,在不同抑制源的平衡中还存在速度相关的变化,这在更易激发的运动池中最为明显。我们得出的结论是,突触驱动被差异化地调整为运动神经元的生物物理特性,并认为运动前速度存在差异以简化运动速度变化过程中脊髓运动池内活动的协调。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号