...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Fast computations in cortical ensembles require rapid initiation of action potentials
【24h】

Fast computations in cortical ensembles require rapid initiation of action potentials

机译:快速计算皮质集合体需要快速启动动作电位

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The abilities of neuronal populations to encode rapidly varying stimuli and respond quickly to abrupt input changes are crucial for basic neuronal computations, such as coincidence detection, grouping by synchrony, and spike-timing-dependent plasticity, as well as for the processing speed of neuronal networks. Theoretical analyses have linked these abilities to the fast-onset dynamics of action potentials (APs). Using a combination of whole-cell recordings from rat neocortical neurons and computer simulations, we provide the first experimental evidence for this conjecture and prove its validity for the case of distal AP initiation in the axon initial segment (AIS), typical for cortical neurons. Neocortical neurons with fast-onset APs in the soma can phase-lock their population firing to signal frequencies upto ~300-400Hz and respond within1-2 ms to subtle changes of input current. The ability to encode high frequencies and response speed were dramatically reduced when AP onset was slowed by experimental manipulations or was intrinsically slow due to immature A P generation mechanisms. Multi-compartment conductance based models reproducing the initiation of spikes in the AIS could encode high frequencies only if AP onset was fast at the initiation site (e.g., attributable to cooperative gating of a fraction of sodium channels) but not when fast onset of somatic AP was produced solely by back propagation. We conclude that fast-onset dynamics is a genuine property of cortical AP generators. It enables fast computations in cortical circuits that are rich in recurrent connections both within each region and across the hierarchy of areas.
机译:神经元群体编码快速变化的刺激并快速响应突然的输入变化的能力对于基本神经元计算(例如巧合检测,同步分组和依赖于尖峰时序的可塑性)以及神经元的处理速度至关重要。网络。理论分析已将这些能力与动作电位(AP)的快速发作动力学联系在一起。使用大鼠新皮层神经元的全细胞记录和计算机模拟相结合,我们为该推测提供了第一个实验证据,并证明了其在轴突初始节段(AIS)中远端皮层始发的情况下的有效性,这是皮层神经元的典型特征。体细胞中具有快速发作的AP的新皮层神经元可以将其种群触发相位锁定,使信号频率高达〜300-400Hz,并在1-2 ms内对输入电流的细微变化做出响应。当AP的发作由于实验操作而减慢或由于不成熟的A P生成机制而固有地减慢时,编码高频和响应速度的能力将大大降低。仅当AP在起始位点快速发作(例如,归因于部分钠通道的协同门控)时,才可以在AIS中基于多室电导的模型重现尖峰的起始,而不能对高频进行编码完全是由反向传播产生的。我们得出结论,快速发作的动力学是皮质AP发生器的真正特性。它可以在皮质电路中进行快速计算,这些皮质电路在每个区域内以及整个区域层次结构中都有大量的重复连接。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号