...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Spinal Atypical Protein Kinase C Activity Is Necessary to Stabilize Inactivity-Induced Phrenic Motor Facilitation
【24h】

Spinal Atypical Protein Kinase C Activity Is Necessary to Stabilize Inactivity-Induced Phrenic Motor Facilitation

机译:脊柱非典型蛋白激酶C活性是稳定非活动性诱发的ren神经运动促进所必需的。

获取原文
获取原文并翻译 | 示例
           

摘要

The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory neural drive is restored. The mechanisms underlying iPMF are unknown. Here, we demonstrate in anesthetized rats that spinal mechanisms give rise to iPMF and that iPMF consists of at least two mechanistically distinct phases: (1) an early, labile phase that requires atypical PKC (PKC zeta and/or PKC iota/lambda) activity to transition to a (2) late, stable phase. Early (but not late) iPMF is associated with increased interactions between PKC zeta/iota and the scaffolding protein ZIP (PKC zeta-interacting protein)/p62 in spinal regions associated with the phrenic motor pool. Although PKC zeta/iota activity is necessary for iPMF, spinal atypical PKC activity is not necessary for phrenic long-term facilitation (pLTF) following acute intermittent hypoxia, an activity-independent form of spinal respiratory plasticity. Thus, while iPMF and pLTF both manifest as prolonged increases in phrenic burst amplitude, they arise from distinct spinal cellular pathways. Our data are consistent with the hypotheses that (1) local mechanisms sense and respond to reduced respiratory-related activity in the phrenic motor pool and(2) inactivity-induced increases in phrenic inspiratory output require local PKC zeta/iota activity to stabilize into along-lasting iPMF. Although the physiological role of iPMF is unknown, we suspect that iPMF represents a compensatory mechanism, assuring adequate motor output in a physiological system in which prolonged inactivity ends life.
机译:控制呼吸的神经网络必须以足以维持生命的水平建立有节奏的运动输出。呼吸神经活动的减少会在驱动横diaphragm膜的回路中引发一种新的可塑性形式,称为非活动性运动促进(iPMF),一旦恢复呼吸神经驱动,observed呼吸输出就会反弹。 iPMF的基础机制尚不清楚。在这里,我们在麻醉的大鼠中证明了脊髓机制产生了iPMF,而iPMF至少包括两个机械上不同的阶段:(1)早期不稳定的阶段,需要非典型PKC(PKC zeta和/或PKC iota / lambda)活性过渡到(2)后期的稳定阶段。早期(但不晚)iPMF与与the运动池相关的脊柱区域中PKC zeta / iota与支架蛋白ZIP(PKC zeta相互作用蛋白)/ p62之间的相互作用增强相关。尽管PKC zeta / iota活性对于iPMF是必需的,但急性间断性缺氧(一种与活动无关的形式,即脊髓呼吸可塑性)之后的long长期促进(pLTF),脊柱非典型PKC活性不是必需的。因此,尽管iPMF和pLTF均表现为爆发幅度的延长增加,但它们源自独特的脊髓细胞途径。我们的数据与以下假设相符:(1)局部机制感知并应对运动池中与呼吸有关的活动减少,以及(2)不活动引起的吸气量增加,需要局部PKC zeta / iota活性才能稳定。持久的iPMF。尽管iPMF的生理作用尚不清楚,但我们怀疑iPMF代表一种补偿机制,可确保长时间不活动的生理系统中足够的运动输出,从而终止生命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号