...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization
【24h】

Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization

机译:脊柱颈部可塑性通过电隔离控制突触后的钙信号

获取原文
获取原文并翻译 | 示例

摘要

Dendritic spines have been proposed to function as electrical compartments for the active processing of local synaptic signals. However, estimates of the resistance between the spine head and the parent dendrite suggest that compartmentalization is not tight enough to electrically decouple the synapse. Here we show in acute hippocampal slices that spine compartmentalization is initially very weak, but increases dramatically upon postsynaptic depolarization. Using NMDA receptors as voltage sensors, we provide evidence that spine necks not only regulate diffusional coupling between spines and dendrites, but also control local depolarization of the spine head. In spines with high-resistance necks, presynaptic activity alone was sufficient to trigger calcium influx through NMDA receptors and R-type calcium channels. We conclude that calcium influx into spines, akey trigger for synaptic plasticity, is dynamically regulated by spine neck plasticity through a process of electrical compartmentalization.
机译:已经提出了树突棘作为电气隔室,用于主动处理局部突触信号。但是,对脊柱头部和母体树突之间的电阻的估计表明,分隔的强度不足以使突触电分离。在这里,我们在急性海马切片中显示,脊柱分隔最初很弱,但在突触后去极化时急剧增加。使用NMDA受体作为电压传感器,我们提供的证据表明,脊柱颈部不仅可以调节棘突和树突之间的扩散耦合,而且还可以控制脊柱头部的局部去极化。在具有高抵抗力颈部的棘突中,仅突触前活动足以触发钙通过NMDA受体和R型钙通道的流入。我们得出的结论是,钙进入脊柱是突触可塑性的关键触发因素,通过电隔室过程通过脊柱颈可塑性动态调节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号