首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex.
【24h】

Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex.

机译:小脑皮质输入层内前馈抑制电路的突触和细胞特性。

获取原文
获取原文并翻译 | 示例
           

摘要

Precise representation of the timing of sensory stimuli is essential for rapid motor coordination, a core function of the cerebellum. Feedforward inhibition has been implicated in precise temporal signaling in several regions of the brain, but little is known about this type of inhibitory circuit within the input layer of the cerebellar cortex. We investigated the synaptic properties of feedforward inhibition at near physiological temperatures (35 degrees C) in rat cerebellar slices. We establish that the previously uncharacterized mossy fiber-Golgi cell-granule cell pathway can act as a functional feedforward inhibitory circuit. The synchronous activation of four mossy fibers, releasing a total of six quanta onto a Golgi cell, can reset spontaneous Golgi cell firing with high temporal precision (200 mus). However, only modest increases in Golgi cell firing rate were observed during trains of high-frequency mossy fiber stimulation. This decoupling of Golgi cell activity from mossy fiber firing rate wasattributable to a strong afterhyperpolarization after each action potential, preventing mossy fiber-Golgi cell signaling for approximately 50 ms. Feedforward excitation of Golgi cells induced a temporally precise inhibitory conductance in granule cells that curtailed the excitatory action of the mossy fiber EPSC. The synaptic and cellular properties of this feedforward circuit appear tuned to trigger a fast inhibitory conductance in granule cells at the onset of stimuli that produce intense bursts of activity in multiple mossy fibers, thereby conserving the temporal precision of the initial granule cell response.
机译:精确表示感觉刺激的时机对于快速运动协调(小脑的核心功能)至关重要。前馈抑制与大脑几个区域的精确时间信号有关,但对小脑皮质输入层中的这种抑制电路知之甚少。我们研究了大鼠小脑切片中接近生理温度(35摄氏度)的前馈抑制的突触特性。我们建立了以前未表征的苔藓纤维-高尔基体细胞-颗粒细胞途径可以作为功能性前馈抑制电路。四个苔藓纤维的同步激活将总共六个量子释放到高尔基体细胞上,可以以高时间精度(200 mus)重置自发高尔基体细胞的发射。但是,在高频苔藓纤维刺激训练期间,仅观察到高尔基细胞发射速率的适度增加。高尔基细胞活性与生苔纤维发射速率的这种脱钩归因于每个动作电位后强的超极化后,阻止了约50 ms的生苔纤维-高尔基细胞信号传导。高尔基体细胞的前馈激发在颗粒细胞中诱导了时间精确的抑制电导,从而抑制了苔藓纤维EPSC的兴奋作用。该前馈电路的突触和细胞特性似乎已调整为在刺激发作时触发颗粒细胞中的快速抑制电导,该刺激在多个苔藓纤维中产生强烈的活性爆发,从而保留了最初颗粒细胞反应的时间精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号