首页> 外文期刊>The Journal of Chemical Physics >Structural, dynamical, and transport properties of the hydrated halides: How do At- bulk properties compare with those of the other halides, from F- to I-?
【24h】

Structural, dynamical, and transport properties of the hydrated halides: How do At- bulk properties compare with those of the other halides, from F- to I-?

机译:水合卤化物的结构,动力学和传输性质:从F-到I-,散装性质与其他卤化物相比如何?

获取原文
获取原文并翻译 | 示例
           

摘要

The properties of halides from the lightest, fluoride (F-), to the heaviest, astatide (At-), have been studied in water using a polarizable force-field approach based on molecular dynamics (MD) simulations at the 10 ns scale. The selected force-field explicitly treats the cooperativity within the halide-water hydrogen bond networks. The force-field parameters have been adjusted to ab initio data on anion/water clusters computed at the relativistic Moller-Plesset second-order perturbation theory level of theory. The anion static polarizabilities of the two heaviest halides, I- and At-, were computed in the gas phase using large and diffuse atomic basis sets, and taking into account both electron correlation and spin-orbit coupling within a four-component framework. Our MD simulation results show the solvation properties of I- and At- in aqueous phase to be very close. For instance, their first hydration shells are structured and encompass 9.2 and 9.1 water molecules at about 3.70 +/- 0.05 angstrom, respectively. These values have to be compared to the F-, Cl-, and Brones, i.e., 6.3, 8.4, and 9.0 water molecules at 2.74, 3.38, and 3.55 angstrom, respectively. Moreover our computations predict the solvation free energy of At- in liquid water at ambient conditions to be 68 kcal mol(-1), a value also close the I- one, about 70 kcal mol(-1). In all, our simulation results for I- are in excellent agreement with the latest neutron-and X-ray diffraction studies. Those for the At- ion are predictive, as no theoretical or experimental data are available to date. (C) 2016 AIP Publishing LLC.
机译:已使用可极化的力场方法,基于分子动力学(MD)模拟,在10 ns的范围内研究了从最轻的氟化物(F-)到最重的a氧化物(At-)的卤化物的性质。选定的力场明确处理了卤化物-氢键网络中的协同作用。力场参数已被调整为从相对论的Moller-Plesset二阶摄动理论理论水平计算的阴离子/水团簇的从头算数据。使用大原子和弥散原子基集,在气相中计算了两个最重的卤化物I-和At-的阴离子静态极化率,同时考虑了四组分框架内的电子相关性和自旋轨道耦合。我们的MD模拟结果表明,I-和At-在水相中的溶剂化性能非常接近。例如,它们的第一水合壳是结构化的,并分别包含约3.70 +/- 0.05埃的9.2和9.1水分子。这些值必须分别与F-,Cl-和Brones(即6.3、8.4和9.0水分子在2.74、3.38和3.55埃处)进行比较。此外,我们的计算预测在环境条件下液态水中At-的溶剂化自由能为68 kcal mol(-1),该值也接近I-1,约为70 kcal mol(-1)。总之,我们对I-的模拟结果与最新的中子和X射线衍射研究非常吻合。由于迄今为止尚无理论或实验数据,因此有关Ation的预测是可预测的。 (C)2016 AIP出版有限责任公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号