...
首页> 外文期刊>The Journal of Chemical Physics >Optimizing molecular properties using a relative index of thermodynamic stability and global optimization techniques
【24h】

Optimizing molecular properties using a relative index of thermodynamic stability and global optimization techniques

机译:使用相对热力学稳定性指数和整体优化技术优化分子性质

获取原文
获取原文并翻译 | 示例
           

摘要

We devised a global optimization (GO) strategy for optimizing molecular properties with respect to both geometry and chemical composition. A relative index of thermodynamic stability (RITS) is introduced to allow meaningful energy comparisons between different chemical species. We use the RITS by itself, or in combination with another calculated property, to create an objective function F to be minimized. Including the RITS in the definition of F ensures that the solutions have some degree of thermodynamic stability. We illustrate how the GO strategy works with three test applications, with F calculated in the framework of Kohn-Sham Density Functional Theory (KS-DFT) with the Perdew-Burke-Ernzerhof exchange-correlation. First, we searched the composition and configuration space of CmHnNpOq (m = 0-4, n = 0-10, p = 0-2, q = 0-2, and 2 <= m + n + p + q <= 12) for stable molecules. The GO discovered familiar molecules like N-2, CO2, acetic acid, acetonitrile, ethane, and many others, after a small number (5000) of KS-DFT energy evaluations. Second, we carried out a GO of the geometry of CumSn+ n (m = 1,2 and n = 9-12). A single GO run produced the same low-energy structures found in an earlier study where each CumSn+ n species had been optimized separately. Finally, we searched bimetallic clusters AmBn (3 <= m + n <= 6, A, B = Li, Na, Al, Cu, Ag, In, Sn, Pb) for species and configurations having a low RITS and large highest occupied Molecular Orbital (MO) to lowest unoccupied MO energy gap (Eg). We found seven bimetallic clusters with E-g > 1.5 eV. (C) 2016 AIP Publishing LLC.
机译:我们设计了一种全局优化(GO)策略,以针对几何形状和化学成分优化分子特性。引入了热力学稳定性的相对指数(RITS),可以在不同化学物种之间进行有意义的能量比较。我们单独使用RITS或与其他计算的属性结合使用,以创建要最小化的目标函数F。在F的定义中包括RITS可确保解决方案具有一定程度的热力学稳定性。我们说明了GO策略如何在三个测试应用程序下工作,其中F是在Kohn-Sham密度泛函理论(KS-DFT)与Perdew-Burke-Ernzerhof交换关联的框架下计算的。首先,我们搜索CmHnNpOq(m = 0-4,n = 0-10,p = 0-2,q = 0-2和2 <= m + n + p + q <= 12 )以获得稳定的分子。在经过少量(5000)KS-DFT能量评估后,GO发现了熟悉的分子,例如N-2,CO2,乙酸,乙腈,乙烷等。其次,我们对CumSn + n的几何进行了GO(m = 1,2和n = 9-12)。一次GO运行产生的低能量结构与早期研究中发现的相同,其中每个CumSn + n物种均已分别优化。最后,我们搜索了双金属簇AmBn(3 <= m + n <= 6,A,B = Li,Na,Al,Cu,Ag,In,Sn,Pb)具有较低的RITS和较大的最高占用量的物种和构型分子轨道(MO)至最低的未占据MO能隙(Eg)。我们发现E-g> 1.5 eV的七个双金属簇。 (C)2016 AIP出版有限责任公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号