首页> 外文期刊>The Journal of Chemical Physics >Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates
【24h】

Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates

机译:了解结构I和II笼形水合物的分解能和包封能

获取原文
获取原文并翻译 | 示例
           

摘要

When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water " hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters. Published by AIP Publishing.
机译:在高压和低温条件下用水或冰压缩时,某些气体会形成固态气体水合物夹杂物,在这些压力下其熔点比冰高。在这项工作中,我们研究了导致包合物水合物相形成的客水与水-水相互作用能的平衡。特别是,使用具有精确水势的分子动力学模拟来研究甲烷,乙烷和丙烷的结构式I(sI)和II(sII)笼形水合物的形成能。计算包合物水合物相的解离焓,相应相中甲烷,乙烷和丙烷客体的包封焓,以及水分子的平均键合焓,并与精确的量热测量以及先前的经典和量子力学计算进行比较。可用。甲烷,乙烷和丙烷客体的包封能稳定大小的sI和sII水合物笼,较大的分子提供更大的包封能。与冰相比,在sI和sII阶段平均水-水相互作用减弱。在冰相和水合物相中范德华势能的相对大小相似,但是在冰相中,静电相互作用更强。稳定的客体-水“疏水”相互作用补偿了较弱的水-水相互作用并稳定了水合物相。 Van der Waals-Platteeuw统计力学理论中使用了许多有关客笼水相互作用的常见假设,以预测不同压力-温度条件下笼形水合物相的稳定性。本计算结果表明,其中一些假设可能无法准确反映客体分子与晶格水之间相互作用的物理性质。由AIP Publishing发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号