首页> 外文期刊>The Journal of Chemical Physics >Novel methods for configuration interaction and orbital optimization for wave functions containing non-orthogonal orbitals with applications to the chromium dimer and trimer
【24h】

Novel methods for configuration interaction and orbital optimization for wave functions containing non-orthogonal orbitals with applications to the chromium dimer and trimer

机译:用于包含非正交轨道的波函数的结构相互作用和轨道优化的新方法,并应用于铬二聚体和三聚体

获取原文
获取原文并翻译 | 示例
           

摘要

A novel algorithm for performing configuration interaction (CI) calculations using non-orthogonal orbitals is introduced. In the new algorithm, the explicit calculation of the Hamiltonian matrix is replaced by the direct evaluation of the Hamiltonian matrix times a vector, which allows expressing the CI-vector in a bi-orthonormal basis, thereby drastically reducing the computational complexity. A new non-orthogonal orbital optimization method that employs exponential mappings is also described. To allow non-orthogonal transformations of the orbitals, the standard exponential mapping using anti-symmetric operators is supplemented with an exponential mapping based on a symmetric operator in the active orbital space. Expressions are obtained for the orbital gradient and Hessian, which involve the calculation of at most two-body density matrices, thereby avoiding the time-consuming calculation of the three-and four-body density matrices of the previous approaches. An approach that completely avoids the calculation of any four-body terms with limited degradation of convergence is also devised. The novel methods for non-orthogonal configuration interaction and orbital optimization are applied to the chromium dimer and trimer. For internuclear distances that are typical for chromium clusters, it is shown that a reference configuration consisting of optimized singly occupied active orbitals is sufficient to give a potential curve that is in qualitative agreement with complete active space self-consistent field (CASSCF) calculations containing more than 500 x 10(6) determinants. To obtain a potential curve that deviates from the CASSCF curve by less than 1 mHartree, it is sufficient to add single and double excitations out from the reference configuration. (C) 2015 AIP Publishing LLC.
机译:介绍了一种使用非正交轨道进行构型相互作用(CI)计算的新颖算法。在新算法中,用直接评估汉密尔顿矩阵乘以一个向量来代替对汉密尔顿矩阵的显式计算,从而可以在双正交基础上表示CI矢量,从而大大降低了计算复杂度。还介绍了一种新的采用指数映射的非正交轨道优化方法。为了允许轨道的非正交变换,在活动轨道空间中,使用基于对称算子的指数映射对使用反对称算子的标准指数映射进行补充。获得了关于轨道梯度和Hessian的表达式,其中涉及至多两体密度矩阵的计算,从而避免了先前方法的三体和四体密度矩阵的费时的计算。还设计了一种完全避免计算任何四体项且收敛性有限的方法。非正交构型相互作用和轨道优化的新方法被应用于铬二聚体和三聚体。对于典型的铬团簇核间距,表明由优化的单占据有源轨道组成的参考构型足以给出与包含完整元素的完整有源空间自洽场(CASSCF)计算定性一致的势能曲线。多于500 x 10(6)个行列式。为了获得偏离CASSCF曲线小于1 mHartree的电势曲线,从参考配置中添加单激励和双激励就足够了。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号